データ・アナリティクス入門

偏差値では語れない実感

平均に秘めた疑問は? 教育現場では、単純平均ばかりが重視されがちです。標準偏差を基に算出される偏差値は、詰め込み教育の象徴とされることもありますが、標準偏差を無視すると真実を見誤る可能性があることを、ぜひ周囲にも伝えていきたいと思います。 統計教育の難しさは? 私は高校で数学の教員を務めており、新課程において数学の統計分野が必修となったため、標準正規分布まで教えることになりました。この単元は多くの数学教師にとって教えにくいと感じられがちですが、実際に社会人になってから最も役立つ知識であると実感しています。実際、校内の制度を変更する際には、正規分布に基づくデータを示すことで説得力を得た経験があります。 定量分析に挑戦すべき? また、私は生徒の成績データを扱う部署に所属しており、統計の知識はすでに成績データの分析に活用されています。一方で、生徒募集に関しては、一般企業での営業活動に例えられるように定性データが中心で、定量データの解析が進んでいません。そこで、データ収集の方法を見直し、次年度から定量的な分析を強化していこうと考えています。

データ・アナリティクス入門

ナノ単科で見つける学びの扉

自分の学びを振り返る? 自分の言葉で学んだ内容を整理する機会が多く設けられており、復習の面でとても有意義でした。また、これまで習得してきた分析手法を再確認できた点も良かったです。ライブ授業の録画を用いた例題で、実際に手法を振り返るとともに、他の受講生のコメントからうまく言葉にできなかった点もしっかり復習できました。 分析と仮説はどう築く? 実務においては、まず「what」「where」「why」「how」のステップを踏みながらアンケート分析を行い、仮説検討の際にはフレームワークを活用して網羅的に考えることを重視したいと考えています。さらに、「選んで比較」を繰り返すことで、最終的に一つのストーリーとして筋を通す資料を作成できると思います。 実践経験はどう見る? 6月下旬から予定されている社内のアンケート分析において、これらの手法を実践していく所存です。一方で、実践経験が不足している点は課題と感じています。そこで、実務以外にも統計局のデータを用いて地域ごとの人口動向とその原因について検討するなど、さらなる練習機会を積極的に設けたいと思います。

クリティカルシンキング入門

明確な問いで未来を切り拓く

具体的問いは何? イシューを明確にすることの重要性を学びました。まず、現状分析をしっかりと行い、具体的な問い―例えば「来月の売上目標はいくらに設定するか」―を設定することで、実現すべきことや取るべき取り組みが明瞭になります。問いを明文化する際は、論理の流れに沿いながら、実践的な答えを導き出せるよう具体的な要素を盛り込みます。 論理の組み立ては? また、イシューの特定にピラミッドストラクチャーを活用する手法も有効です。まずイシューを正確に定め、その問いに答えるための論理的な枠組みを構築し、適切な根拠をもって支えるステップが重要です。一貫してこのプロセスに基づくことで、方向性を見失うことなく、必要な取り組みを着実に進められるようになります。 議論はどう見直す? 会議や資料作成においても、このイシュー意識を軸に、シンプルで論理的なアプローチを保つことが求められます。議論が広がりすぎたり、細かい点に過度に焦点が当たりがちな場合でも、常にイシューに立ち返り、全体の方向性を再確認することで、効果的な議論や資料作成が実現されると感じました。

データ・アナリティクス入門

変化を捉え、採用戦略の新しい視点を獲得

「分析は比較なり」とは? 「分析は比較なり」という言葉が強く印象に残りました。これまで、分析を行う際にはひとつの情報やデータから何かを導き出そうとすることに注力しがちでした。しかし、適切な対象と比較を行うことが重要であることに改めて気づかされました。データ加工が目的化し、肝心な分析がおろそかにならないよう、「何のための分析なのか」を明確にすることが大切だと学びました。 採用戦略にデータ分析をどう活かす? また、この知見は顧客企業の採用戦略を考える際にも活用できると感じました。顧客が抱える採用課題を解決するためには、現状データ(求職者の動向や志向性など)をもとにボトルネックを分析する必要があります。目標と現状の差を正確に把握するために、今回の学びを活かしてデータ分析を行いたいです。 自分なりの仮説が鍵? さらに、顧客の課題に対して自分なりの仮説を立てること、分析の目的を明確にすることを意識していきたいです。採用市場は日々変化していますが、その変化を「仕方がないこと」と捉えるのではなく、変化の原因や市場の動きを常に考えていくことが重要です。

データ・アナリティクス入門

試行錯誤で見えた成長のヒント

原因はどこにある? 問題の原因を探る際は、まず全体のプロセスに分解し、どの段階で課題が発生しているかを明らかにします。その上で、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて最適なものに絞り込む手法が重要です。 A/Bテストの意味は? また、A/Bテストはシンプルで運用や判断がしやすいというメリットがあり、低コストかつ少ない工数で実施できるため、リスクを最小限に抑えながら改善を進める有効な手段といえます。 利用状況の課題は? 現在進めているサービスについては、利用者の活用状況を分析し、どのように利用され、さらに活用を推進するためにはどのような施策が効果的かを検討することが課題となっています。そこで、まず現状の利用状況を詳細に把握し、その分析結果をもとに仮説を立て、改善のための施策を検討していきます。 次のステップは? 具体的には、各施策を一つずつ実施し、その結果を確認しながら次のステップへ進んでいく方針です。施策の実施期間は概ね1~2週間を想定していますが、内容とともに期間も適宜見直しながら検討していく予定です。

戦略思考入門

フレームで拓く戦略の見える未来

現状はどう整理する? 戦略を考える出発点は、まず内部と外部の現状を俯瞰して整理し、正しく把握することにあります。実際の事例から、私たちは目の前の出来事や直近の経験に影響され、偏った見方をしてしまうリスクがあると実感しました。そのため、フレームワークを活用して抜けや漏れなく現状分析を行う重要性を再認識しました。 業界状況をどう見る? また、PEST分析を用いて業界全体が直面する状況を整理し、その上で3C分析を通じて今後の勝ち筋を見出すことに大きな可能性を感じました。中長期的な戦略を立案する過程では、バリューチェーン分析を活用し、自身が所属する製造部門が提供しているユニークな価値について深く考える機会となりました。 分析実践はどう進む? 具体的には、PEST分析を実施して税制の変化などの業界に影響を及ぼす要因を整理し、その影響を製造部門における各プロセスに反映させる方法を検討します。また、バリューチェーン分析の実践例を参考にしながら、どのような付加価値が生み出されているのかを体系的にまとめることで、今後の戦略立案に役立てたいと考えています。

クリティカルシンキング入門

固定概念をひらく数字探求

どんな切り口がある? データの扱いや切り口を変えることで、見え方や結果が大きく異なることを学びました。「本当にこれだけなのか?」と問い続ける姿勢の大切さを痛感しています。また、思い込みや自身の仮説だけで分析しないよう、注意が必要だと感じました。特に、細かくデータを刻む手法は非常に印象深く、発見の連続でした。 定性と数字はどう違う? 普段は定性的な業務が中心で、データを扱う機会が少なかったので、新しい視点を得られたことに新鮮さを感じました。その一方で、数字をもっと活用すれば、業務の見え方が変わる可能性を実感しました。これまで「この業界はこの数字」という固定概念にとらわれていた部分以外の新たな数字や切り口を探る必要があると考えさせられました。 どんな指標が必要? この授業を通じて、定性的な課題をどのように数字に置き換えるか、またどんな指標を使えば良いのかを改めて考える機会となりました。定性的なものを数字化する際には、それに見合う指標や基準が不可欠であり、その処理方法についても他の受講生の意見や感想を参考にしながら模索していきたいと思います。

クリティカルシンキング入門

多角的視点を磨くデータ探求の旅

切り口の偏りは? せっかくデータを作成しても、切り口が偏ると適切な分析ができない場合があります。そのため、まずは多くの切り口で検証し、仮に失敗しても恐れずに試みることが重要です。 視覚資料の活用は? また、グラフなどの視覚資料を効果的に活用するとともに、全体の区切りや範囲に注意を払い、ダブりや漏れがないように全体像を俯瞰しながら、目的に沿って細かく分解する工夫が求められます。 目的と創意工夫は? 目的を見失わずに、データを創意工夫して見せる姿勢も大切です。MECE(漏れなく、ダブりなく)を意識し、複数の切り口から分析を行い、その結果を分かりやすく伝えることを心掛けましょう。職場の意見を反映する際も、偏った分析にならないよう真の原因を追求することが必要です。 アンケートの目的は? 今後、職場環境の改善を進めるためにアンケートを実施する際は、まず目的を明確にし、事務局の方向性と従業員の意見のギャップを把握することが基本となります。さまざまな視点から課題を検証し、その分析結果を分かりやすく報告する工夫を重ねていきたいと考えています。

データ・アナリティクス入門

原因究明で見出す新たな一歩

原因はどこにある? 問題解決にあたっては、まず問題がなぜ発生したのか、その原因を明らかにすることが非常に重要です。原因究明のためには、問題が発生するまでのプロセスを分解して分析するアプローチが有効です。各プロセスごとにどこに問題があったのかを洗い出し、整理することで、問題の根本原因に迫ることができます。 改善策は効果的? このプロセス分析に基づいた仮説を複数立てたうえで、実際に改善策を試してみることも重要です。たとえば、A/Bテストを活用して実施した改善策の効果を検証し、より良い解決策に結びつけることが考えられます。こうしたステップにより、単なる経験や直感に頼った対応ではなく、実際のデータに基づく精度の高い問題解決が可能となります。 今後はどうする? 今後、課題への対応としては、まず問題が発生した経緯と各プロセスで何が問題だったのかを、具体的なデータ分析の結果から明確にすることを心がけたいと思います。そして、複数の仮説を立てた上で、改善策を実施し、その結果を詳細に分析することで、プロセス全体の質の向上につなげていければと考えています。

データ・アナリティクス入門

問題解決力を高め、シナリオ実践へ挑戦

問題解決のプロセスとは? 問題解決のプロセス、What、Where、Why、Howについて学びました。私は前職でQC的な問題解決を学び、問題やボトルネックの特定、「なぜなぜ分析」、計画、アクションのような手法で考える癖があり、今回学んだ内容と似ている部分が多いと感じました。しかし、元の思考フレームワークに戻りがちな自分を再認識しました。 フラストレーションを解消するには? データ分析や見える化は行っているものの、仮説の検証や具体的なアクションを自発的に行っていない部署の現状にフラストレーションを感じています。おそらく、具体的なアクション(How)を実行できないと諦めているために、根本原因(Why)の追求が疎かになっているのではないかと考えています。 新たなシナリオ作成と実践法 今回学んだことを基に、「How」を実行できると仮定してシナリオを作成し、実践してみたいと思います。また、一連のプロセスを効率的に進められるよう、自身をトレーニングし、さらにBIツールやPythonを活用して知見やスピードを向上させる手法を学びたいと考えています。

データ・アナリティクス入門

データ分析ライブ授業で得た新たな視点と刺激

データ分析の全体像を学ぶ WEEK6までは「what→where→why→how」のステップを各フェーズごとに学んできましたが、ライブ授業において総復習として、一連のデータ分析を行いました。各フェーズで重要な点を再確認することができ、また受講者の考えも伺うことができたため、非常に刺激を受けました。フレームワークの適用場所やグラフの選定についても分かりやすく解説いただき、実際の活用イメージがつかめました。 例題分析で新たな視点を得るには? 今回のライブ授業では、例題のように属性ごとに分けて分析する場面もありました。「〇〇円以上買ったシニア」などといった二つの条件での比較は行っていませんでしたが、新たな切り口で分析できそうだと感じました。 経験を活かせる次のステップとは? 今後は社内のデータアナリスト研修に参加し、アウトプットに注力していきたいと考えています。ただやみくもに分析するのではなく、ストーリーを立てて分析することを意識します。分析力を高め、数値やフレームワーク、表現するグラフを適切に選べるよう、自己啓発に努めていきたいです。

戦略思考入門

ナノ単科で実感する経済の秘密

規模経済を探るのは? 本講座を通じて、まず「規模の経済性」について学びました。固定費と変動費の分析を正確に行わないと不経済に陥る可能性があるため、コスト構造の把握が非常に重要であると実感しました。 習熟進展はどう考える? 次に「習熟効果」に関して、累積的な生産性の向上がコスト削減に寄与する一方、経験や知見が一定の段階に達すると効果が薄れる可能性があるという点を学び、業務改善のタイミングを見極める大切さを感じました。 範囲効果は何か? また「範囲の経済性」では、既存の資源を他の事業にも活用することで、個別に行う場合よりも効率的にコストを削減できることに気づかされました。技術投資のシナジーを活かし、新規事業の検討につなげる視点が印象に残りました。 ネット未来はどう? 最後に、「ネットワークの経済性」については、参加者が増加するほど利便性が向上し、実際のフィードバックが大きな効果を生む仕組みがあることを学びました。現状、SNSなどの活用が十分でないため、今後の展開に向けてネットワーク利用の検討が必要だと感じました。
AIコーチング導線バナー

「分析 × 活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right