マーケティング入門

顧客の声が導く業務革新

マーケティングの本質は? 今回の講座では、マーケティングの基本要素である「何を売るか」「誰に売るか」「どう魅せるか」を体系的に理解できました。単なる商品提供ではなく、顧客の潜在ニーズやペインポイントを掘り起こし、体験価値を創出するプロセスであることを再認識しました。行動観察、デプスインタビュー、STP分析などの手法を学び、差別化戦略やイノベーション普及の要件、さらには内部顧客視点の重要性にも気づくことができました。 バックオフィスの変革は? また、自身のバックオフィス業務において、従来の補助作業から脱却し、営業店や社内を「顧客」として捉え、価値提供に取り組む必要性を実感しました。業務プロセスを「スピード×正確性」や「コスト削減×利便性」といった複数の軸で再設計し、数値や具体例を用いて価値を明確に伝えることが求められます。この取り組みにより、内部顧客の安心感や満足度が向上し、全社的な競争力強化にも寄与することが期待されます。 業務改善の策は? 今後は、まず日々の業務終了後の振り返りや小規模なPDCAサイクルの実施に取り組み、データ分析を通じて業務効率やペインポイントを定量的に把握していきます。さらに、マーケティングの視点を取り入れたセグメンテーションやポジショニングの再検討、具体的な業務プロセスの改善策を検討し実行する予定です。同僚とのディスカッションやフィードバックも積極的に活用し、持続的な改善と成長を目指していきます。

データ・アナリティクス入門

みんなで目指す納得評価術

評価基準はどう決める? 複数の案を選ぶ際、定量的な評価を行う方法はチーム内の納得感を高めるために有効です。ただし、評価の重みづけが主観的にならないよう注意したいと感じました。 テスト実施の秘訣は? A/Bテストでは、変更する部分を限定・絞ることが重要です。どの部分が効果的だったかを明確に判断できるよう、実施時期や対象ユーザのセグメントを統一し、他の要因が分析に影響しないようにする点にも気をつける必要があります。 現状把握はできてる? まずは現状をしっかりと確認し、当たり前の事実であっても言語化してチーム全体で共通認識を持つことが大切です。その上で、事象の原因を特定し、解決策の検討に移るステップが効果的だと感じます。 アンケート設計はどう? また、仮説をもとにユーザアンケートをデザインする際は、因数分解やクロス集計ができるよう意識することがポイントです。フレームワークを活用して実際に分析し、わかりやすく言語化していくプロセスも有益です。 レポート共有はどう? アンケートのデザインにおいては、考え方や方針をチーム全体で共有し、どのような分析が可能か、またはどの分析を行いたいかを仮のレポートとして作成してみると良いと感じました。 理想と現状の対比は? 最後に、あるべき姿と現状を整理し、適切なフレームワークを見つけて習得することで、資料として他者に教えやすい形にまとめられる点にも大きな意義を見出しました。

戦略思考入門

実務に活かすフレームワークの力

共通理解はどう育む? 業務を進める中で、同じ目標に向かって取り組んでいても、各人の考え方は様々です。しかし、フレームワークを活用して状況を網羅的に整理し、共通理解を生むステップを踏むことで、有効な進展が得られると感じました。PEST分析や3C分析、バリューチェーン分析、SWOT分析といったフレームワークについては理解していますが、実際の業務ではあまり活用されていませんでした。実務にこれらを取り入れ、さらに理解を深めていきたいと思います。 地域開発で何を分析? 地域事業開発においては、市場ニーズを把握するためにPEST分析を、事業領域やターゲットを定めるために3Cやバリューチェーン分析を活用します。さらに、具体的な案件についてはSWOT分析を用いて自社や環境の整理を進めることができます。例えば、地域での脱炭素事業の開発は重要なテーマですが、国ごとに異なる事業環境を考慮するために、PEST分析を活用して整理が必要です。 案件選択はどう決める? 以前の課題で、事業開発における大きな2つの軸は以下の通りでした。①「点から線、線から面へ、収益の塊を創出すること」②「次期中期計画に向けた2倍成長を実現するための投資実行」です。これらの軸に沿った案件は関係者の共感や納得を得やすいので、この軸に基づいて案件を選択することが重要です。その際、フレームワークを通じて投資実行のストーリーを客観的に描けるよう、整理していきたいと考えています。

クリティカルシンキング入門

業務での「MECE」実践法を身につける

学習計画をどう進める? 学習計画を忘れずに進めることが大切だと思いました。私はMECEの分け方でプロセスを分解することを忘れがちなので、この技法を使う癖をつけたいと考えています。 情報収集の重要性とは? さまざまな切り口で分析するためには、常に多様な情報を収集できるようにする必要があると感じました。例えば、カフェでのお客の滞在時間や年齢、それに利用目的をどのように把握するのかについて、日々意識を持って観察しないと有益なデータは得られません。 問題発見にプロセス分解? 業務においても、問題発見と解決のためにプロセスを分解することが有効です。特に問題がなさそうに見える場合でも、分析を進めることで問題が顕在化し、改善策を見出すことができるでしょう。例えば、サプライチェーンやバリューチェーンのどの部分に問題があるのかを見極めたり、予決算分析で単価や数量に分解してみたりすることが挙げられます。また、部下との1on1ミーティングでも、MECEに基づいて事前に準備を進めることが役立ちます。 学びをどう業務に活かす? これらの学びを今日から業務に取り入れてみることが重要です。アナログのツール、例えば紙なども積極的に活用するべきです。そして、単発で終わらせずにしばらく経ってから再度考えることも必要です。また、自分一人では偏りや視点の漏れが生じやすいので、信頼できる他人の意見も積極的に取り入れるように心掛けたいと思います。

データ・アナリティクス入門

仮説を多角的に検証する重要性に気付いた日

仮説検証におけるフレームワークの役割 仮説を立てるための考え方について学びました。特に、3Cや4Pのフレームワークは、以前大学で学んだものの、実際の仕事では体系的に使用していませんでした。しかし、これらを意識することで仮説検証のための情報整理に役立つと感じました。 仮説A以外のデータも探すべき? また、自分の仮説に都合の良いデータだけでなく、仮説A以外の可能性を否定するデータも収集することの重要性に気付きました。実務ではスピードが求められ、自分の仮説を証明するデータを集めがちだったので、この学びは大変有益でした。これからは、直接的なデータだけでなく、複数の切り口からデータを検証するよう心がけたいと思います。 具体的には以下の点に活用できると考えています: - **企画・施策立案** - **クライアントへの提案内容の精査**:クライアントの立場に立って仮説を複数持つことで、より効果的な提案が可能です。 - **ユーザーの動向分析**:例えば、使用率が下がっている場合の原因検証などに使えそうです。 - **目標の設定**:年間目標の設定や到達見込みの予測に活用できます。 行動前に何が大切? 行動の前に、もっと仮説の検証やデータの収集に時間をかけることが重要だと感じました。今後は、「データを分析して仮説を立てる」という従来の手順から、「仮説を立ててデータを分析して検証する」という手順に意識を変えていきたいと思います。

クリティカルシンキング入門

数字を切り口にする新発見のコツ

なぜ切り口が大切? 数字を分解して考える際の重要なポイントを学びました。どのように分ければ情報がより明確に見えるか、多くの切り口を持つことが重要です。例えば、年代別に分ける際に、単純に10代、20代、30代という機械的な分け方をしていましたが、18歳や22歳で分けると、高校生や大学生といった具体的な層が見えてきます。また、ある傾向が見えた場合でも、そこで分解を止めずに「本当にそうか?」と疑問を持ち、他の切り口からも考えてみることが重要です。分解して傾向が見えなくても、別の視点で再考することが大切で、迷わずまずは行動することが必要です。 市場分析はどう進める? 現在、数字を用いた分析の機会は少ないですが、今後開発を進めている製品の市場分析においては、MECE(漏れなくダブりなく)を意識して全体を網羅した切り口を見つけ出し実践したいと考えています。都市別や規模の大きさなど、思いつく限りの切り口を活用し、まずやってみることが大事です。仮に傾向が見え始めても、思考を止めずに「本当にそうか?」と他の視点から再度検証します。 なぜ議論を重ねる? 常にどのような切り口があるかアンテナを張り、プロジェクトメンバーとの議論では、定量的なものだけでなく、定性的なものをどう分解するとどう見えるかについても意見を交わし、考え抜くようにしたいです。また、一度導き出した結論も「本当にそうか?」の問いを繰り返し再考し、慎重に判断するよう心がけます。

クリティカルシンキング入門

MECEで問題解決の達人になる!

何故分解は必要? 物事を分解することの必要性と「MECE」という概念の重要性を学びました。分解することで問題の本質や解決策が見えやすくなり、取り組むべき課題が整理されることに気づきました。また、MECE(漏れなく・ダブりなく)というフレームワークを用いることで、重複や漏れを防ぎ、全体を効率的に把握できるとわかりました。MECEを活用することで、分析や意思決定の精度を高め、効果的な解決策を導き出すことができると感じました。 どうやって結果を整理? 現在の仕事の結果をさらに向上させ、周囲に効果的に伝えるためには、結果を分解して理解を深める時間が必要だと感じています。分解を通じて、各要素の役割や改善点を明確にし、全体像を把握することで、的確なアプローチや改善策を見出せるようになります。また、分解した内容を周囲に伝えることで共通の理解を促し、チーム全体の成果向上にもつながると考えています。このプロセスを意識的に取り入れ、持続的な成長を目指したいです。 学びをどう実践? 学んだことを実践することも重要だと感じています。知識やスキルを仕事や日常に取り入れることで、単なる知識の習得にとどまらず、理解が深まり、より確実なものになります。実践を通じて得たフィードバックや気づきをもとに改善を重ねることで、さらに成長し、より良い結果につなげられると信じています。まずは一歩を踏み出し、学びを行動に移すことを意識していきたいと思います。

クリティカルシンキング入門

データ分析で企業課題を解決!

データ利用の意味は? データを用いる際には、何を表しているのかが明確であり、求める情報を把握できることが重要であると再認識しました。データを全体的に理解し、必要な情報が簡単に見つけられるように工夫を凝らすことも大切です。 目的設定はどうする? データを分析や検証に活用するには、明確な目的を持つことが欠かせません。また、データを分解する際にはMECE(Mutually Exclusive, Collectively Exhaustive)を意識し、様々な観点から分解を試みることが重要であると学びました。 決算分析の秘訣は? 私の会社での月次・年次決算や予実乖離分析にもこの手法を活用できると考えています。これまでの分析では、売上や利益などの主要な数字の推移に依存しており、MECEを用いた分解を行わなかったため、説明できない誤差が残ることがありました。しかし、このスキルを活用することで、予実乖離分析をより正確に行えると感じています。全体の財務諸表を、顧客別や顧客売上別、利益別、部品別といった様々な視点で分解し、正確な分析に結びつけたいと考えています。 コスト要求はどう対処? また、不定期に発生する顧客からのコストダウン要求に対して、社内のコスト把握と顧客要望との比較分析を行うことも目指しています。そして、24年度の予実乖離分析を行ったうえで、25年度の予算作成に反映させ、より正確な計画を作成したいと考えています。

データ・アナリティクス入門

職場の非効率な会議をどう改善したか

問題解決ステップの重要性とは? 問題解決には、「What」「Where」「Why」「How」の4つのステップがあります。これらのステップを順番に進める必要はなく、行き来しながら取り組むのが良いでしょう。特に問題に直面した際、いきなり「How」から始めてしまうことが多いですが、まず「What」で問題の特定に取り組むことが重要だと感じました。「What」を明確にすることで、その後の「How」のステップが実態に沿わなくなることを防ぐことができると考えます。 ロジックツリーで会議問題を解決? 私は数値を用いた分析を行う機会はほとんどありませんが、職場には多くの課題が存在します。定性的な問題でも、問題解決のステップを活用して、問題の明確化、原因の特定、なぜそうなってしまっているのか、どう解決できるかを考えることができます。 具体的な課題の一つとして、時間内に終了しない会議や目的がはっきりしない会議が頻発する点があります。これをロジックツリーを使用して分解し、原因を探り、対策を立てることができると考えます。 「あるべき姿」を常に意識する これらの課題については、現在の職場に来てからの半年間、自分なりに分析し改善に取り組んできました。しかし、周囲がその課題を認識しておらず、そのため私自身も徐々に違和感を感じなくなってきています。今後は「あるべき姿」と「What(何が問題なのか)」を常に意識することを心掛けていきたいと思います。

データ・アナリティクス入門

初心者でも使える問題解決フレームワーク

実践で感じた課題とは? あるべき姿と現状を比較することを心がけてきたが、いざ実施しようとするとできていないと感じることがあります。そのため、まずはWhat(問題を定める)を意識することが重要だと感じています。課題を考える際は、マーケティングの課題なのか、人材の課題なのかといったように、区分分けをすることが有効です。 ロジックツリーは効果的? 数字はロジックツリーのように因数分解することで、どの要素がどのように貢献しているのか(正負を含めて)を把握できることを初めて知り、これはぜひ身に着けたい知識です。 現状把握と意識共有の方法 まずは状態を確認し、たとえ当たり前のことでも言語化することで現状を把握し、チームでの共通認識を持つことが大切です。その後、原因となる事象を特定し、解決策の検討に進みます。ユーザアンケートをデザインする際には、仮説をもって因数分解ができるように、クロス集計も意識します。 新人教育でのロジックツリーの活用 新人教育ではロジックツリーやMECEを活用して、アンケートデザインにおける考え方の方針をチームで共有し、どんな分析ができるのか、また何をしたいのかを実際に仮レポートを作成してみることも大切です。 フレームワークの選択と目標 あるべき姿と現状を整理するために、優れたフレームワークを見つけ、それを習得することが目標です。また、教えられるように資料に整理することも心がけていきます。

アカウンティング入門

新しい学びに目覚めたBS分析の楽しさ

BSの基本を理解するには? BS(バランスシート)についての学習が進行している中で、以前はなじみのなかったBSの仕組みや名前の由来を知ることで、親近感が湧き、理解しやすくなりました。BSは左側が集めたお金の使い道、右側がその資金の集め方を示しており、表裏一体の関係です。また、資産の流動性については、1年を基準に流動と固定に分類されます。PL(損益計算書)と同様に、BSも事業内容や戦略が反映されます。 借り入れの影響と注意点 借り入れに関しても、当たり前ですが利子がつくため、慎重に行う必要がありますが、必要な場合もあります。「脂肪が負債」という例えが面白く、BSをCTスキャンに例えると理解が進みます。 自社のBSをどう活用する? まずは自社のBSを分析し、同業他社も確認します。自社では成長への投資がどのようなストーリーを持つのかを考え、自分なりの解釈を深めます。具体的な例としてJRやDeNAを参考にすると良いでしょう。他の受講生の意見にもあったように、自分の家計のバランスシートを見直すことも、身近で面白いアプローチです。 学習習慣を定着させるには? お盆期間を有効に活用し、朝の時間を学習にあてて習慣化しました。自社や同業のPLやBSを分析し、特色や個性を導き出すことに注力します。数をこなして慣れることが重要で、その際には資金の使い道と調達の両面で考えることが大切です。いよいよ、やり始める決心を固めました。

データ・アナリティクス入門

数字の隠れたストーリーを探る

全体像はどう把握? データを加工する際には、まずインパクト、ギャップ、トレンド、ばらつき、パターンといった視点から全体像を把握することが重要です。その上で、数字で示すのか、ビジュアル化するのか、数式を用いるのかといった手法を選択します。予め何を知りたいのかという前提を忘れず、単に平均値を取るだけでなく、ばらつきに注目して外れ値に潜むチャンスを見出す視点が必要だと感じました。 競合比較はどう見る? 自社品の売り上げや競合との比較についても、提示された数字をそのまま受け止めるだけではなく、どこにベンチマークを置くのかを意識することが求められます。売上が前年より伸びている場合でも、市場全体が拡大し、競合もその中で成長しているのであれば、そのギャップはどこにあるのかを考える癖を身に付けることが大切です。月ごとのシェアや日々の実績トレンドを、抽象的な視点と具体的なアプローチの両面から分析し、真相に迫ることが目標です。 トレンド集計の課題は? また、毎日売上トレンドを集計し、メンバーと共有しているものの、単なるトレンド情報だけではベンチマークを示すことができません。さらに、競合品のデータもタイムリーに入手できていないため比較が難しい状況でした。ピボットテーブルで集計する前のデータ収集に手間を感じ、与えられたデータベースだけで処理しようとしていた自分の意識を改め、より柔軟な視点でデータ活用に取り組む必要性を強く実感しました。

「分析 × 活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right