マーケティング入門

受講生が感じた顧客満足の魔法

マーケティングって何? 今回の学習を通じ、マーケティングという言葉は人によって捉え方に幅があり、その広がりを意識することの重要性を実感しました。マーケティングの基本的なサイクルとして、自社商品の魅力を正しく伝え、顧客にその魅力を感じてもらうことで行動変容(購入)に導くプロセスがあると理解しました。「顧客に買ってもらえるしくみ」というグロービスの定義は、顧客の立場に立ったマーケティングの考え方を示しており、非常に印象深く感じました。 セリングとの違いは? また、マーケティングとセリングの違いについて学びました。セリングは「売りたい商品」からスタートし、売上数量という成果に結びつくのに対し、マーケティングは「市場や顧客のニーズ」から出発し、顧客満足に基づく利益の創出を目指すという点が大きな違いです。この違いを理解することにより、常に顧客志向であることの重要性が一層明確になりました。 どうやって実践する? 今後は、販促施策の企画や検証の際にも顧客視点を軸に、顧客に選ばれる仕組みを意識していきたいと思います。また、アンケート結果を丁寧に分析し、その結果をもとにサービスやイベント運営に反映することで、より良い顧客体験の提供を目指します。さらに、日々の業務において住宅設備や住まいに関するトレンド情報も意識的にキャッチし、適切に活用していくことを心がけています。

データ・アナリティクス入門

比べる力が未来を変える

ライブ授業で感じた点は? 締めのライブ授業では、これまでの学びを振り返る機会がありました。データ分析の手法として、比較を活用する方法を学び、目的設定から仮説構築、データや情報の収集、分析、さらには仮説の検証という一連のプロセスの重要性を実感できました。また、自分の考えにとらわれず、さまざまな視点から検証することの大切さも理解でき、これらの手法をいかに実践し、スキルとして身につけるかが今後の課題であると感じています。 部門業績の課題は? 部門業績分析においては、自部門の営業データを活用し、強みと弱みの再確認を進めています。さらに、セグメント別の成長性や低成長部門の課題を明確にし、改善策の検討や戦略の見直しにつなげたいと考えています。次年度の目標設定にあたっては、今年の実績を論理的に分析し、定量的・定性的な評価が可能な具体的な目標を立てる予定です。すでに各メンバーには来期に向けて自ら考えた目標設定を進めてもらっており、私自身も部門全体の強みや弱み、注力すべきセグメントを整理した上で、各メンバーの目標と比較・検証を行っています。このプロセスを通じて、部門全体で論理的な目標理解を深め、同じ方向性で次年度の業務に取り組むことを目指しています。目標設定は3月中に取りまとめ、次年度からは月次で目標達成度の比較分析を実施し、達成に向けた具体策を全員で共有していく方針です。

データ・アナリティクス入門

データ分析の新たな視点を業務に活かす

データ比較の意義とは? 「分析は比較なり」という考え方の重要性を再認識しました。ビジネスにおける意思決定の際には、データを用いた提言を行う中で"比較対象"や"基準"を明確にしておくことが上流段階で大切であると感じています。 データの見せ方をどう工夫する? また、定量データの種類に応じて、適切な加工法やグラフの見せ方があることを学びました。普段から業務でプレゼンテーション資料を作成していますが、これまでは感覚的に数字を表示していました。今後は、実数で見せるべきものと割合で見せるべきものの区別を意識して、より効果的に可視化していきたいと思います。 分析の視点を資料にどう活かす? 資料作成の際、分析結果や二次情報を取りまとめるにあたり、「比較」や「数字の見せ方」といった、わかりやすい表現方法を意識していこうと考えています。また、業務委託先を選定する際に、選定基準や評価基準を整理するためにも、分析の観点を活用することができると感じました。 新たな観点を業務にどう適用する? これまで意識してこなかった新たな観点を業務に適用するために、まず業務の目的をしっかりと立ち止まって整理し、可視化することを習慣化したいと思います。これにより、意思決定を促進するためのデータ活用の余地があるかどうかを判断し、適切な判断ポイントを組み込むことができると考えています。

データ・アナリティクス入門

学びの軌跡が未来を照らす

仮説の切り口はどう? 原因の仮説を洗い出す際は、フレームワークなどを活用しながら大きく2つに分け、対概念の視点を取り入れて考えることが有用です。その後、問題の原因を明確にするために、ステップを踏んでデータを分析することで精度を高められます。 解決策はどう選ぶ? また、解決策を立案する際には、複数の選択肢をまず洗い出し、しっかりとした判断基準と重み付けを設定した上で、定量的な根拠により絞り込むことが重要です。 アンケートの見方は? アンケートの分析においては、満足度や推奨度などの数値から問題点を見つけ出し、フレームワークを用いてMECE(漏れなく・ダブりなく)を意識しながら原因を掘り下げることが考えられます。対応策を検討する際には、現状設定している軸に加え、コスト、スピード、対象範囲、実現可能性などの評価項目に対して重み付けを行いながら施策を選択していくことが求められると感じました。 分析の盲点はどこ? これまでのアンケート分析では、満足度、推奨度、理解度などを全体の平均値で評価する手法が主流でした。しかし、全体の数値は悪くなくとも狙い通りの結果が得られなかった場合や、自由記述回答の中に不満やクレームが見受けられた際には、回答者の属性ごとに分析を行うことで、これまで気づかなかった傾向や問題点を発見できる可能性があると捉えています。

クリティカルシンキング入門

生産部門のトラブル解決に光明を見出す学び

ゴール達成への基本戦略は? 以下2点について学びました。 1. 到達したいゴールに向けてマイルストーンを設定し、その時々でイシューを考え、それに対する打ち手を取る必要がある。 2. データをさまざまな角度から分析し、イシューを特定する必要がある。 業務としては製薬会社の生産部門におけるトラブル解決を担当しております。この知識を業務にどう活かせるか、以下の具体例が思い浮かびました。 トラブル解決に必要な視点とは? まず、年間目標や個々の業務における課題解決においては、到達したいゴールに向けてマイルストーンを設定し、それぞれのタイミングでイシューを特定し、具体的な対策を検討することが必要です。 次に、生産部門におけるトラブルの原因究明とその解決策の立案については、様々な角度からデータを分析し、イシューを特定することが重要です。これにより、より的確な原因分析と解決策の提案が可能になります。 メンバー育成に活かせるアプローチは? 最後に、部門におけるメンバーのキャリア開発と育成についても、前述の2つの原則を適用することができます。メンバーの成長に向けた目標を設定し、その達成のための具体的なイシューと打ち手を考えます。 以上のように、学んだ知識を活用して業務を進めていくことで、課題解決能力の向上や部門の効率化が期待できると考えます。

戦略思考入門

差別化を目指すVRIO活用の挑戦

どこで差別化が足りる? 私は、日常業務において差別化を意識して取り組んできましたが、その中で場当たり的な意見に左右されがちであったことを今回の学習を通じて実感しました。VRIOフレームワークを活用し、情報を抜けもれなく整理することで、場当たり的でない継続的な施策を考えることができると理解しました。 事例と現実のギャップは? 明確な事例であれば、VRIOでの情報整理はスムーズに進むでしょう。しかし、ビジネスの種類や状況によっては必ずしもそう簡単にはいかないと感じます。例えば、「顧客にとっての価値」という観点では、BtoBよりBtoCの方が分かりやすくまとめられるかもしれません。また、「Yes」「No」の判断には、VRIO以外のフレームワークを組み合わせる必要があるかもしれません。実際のビジネスは複雑であるため、分析する際にはいくつかのフレームワークを組み合せることが求められる、とハードルの高さを感じています。 広報での活用法は? それでも、VRIOの活用は私の従事する広報業務において非常に有効だと考えています。できるだけ早く実行に移したいと考えつつも、現実的には一筋縄ではいかないと感じています。まずは、日々の企画業務に少しずつ取り入れ、周囲のメンバーからのフィードバックを受けつつ、多様な視点を吸収し、判断軸を精緻化していきたいと思っています。

データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。

データ・アナリティクス入門

ロジックで変える!問題解決のヒント

要素を分解する理由は? 要素を細かく分解して考えることの重要性を実感しています。ロジックツリーやMECEを用いることで問題解決に導く考え方は知っていましたが、実際の業務で活用する機会はほとんどありませんでした。しかし、例えば売上不足の原因分析において、感覚的な判断のみで進めると、実は客単価に問題があるにもかかわらず、売上数の伸び悩みにだけ着目してしまい、重要な視点を見落とす可能性があることを改めて認識しました。 良い切り口はどこに? また、悪い面ばかりに目が行きがちですが、良い切り口も取り入れることで全体の傾向が見え、適切な対策を講じやすくなると感じます。たとえば、自社で提供しているクラウドサービスの解約要因やアップセルの要因を分析する際は、業界、契約ユーザー数、利用部門、契約年数、ログイン回数などを軸に、理想と実際のギャップをMECEの視点で整理することが有用だと思います。 問題の整理はどうする? 今後、業務上で何かを分析する必要が生じた際には、まず直面している状況を具体的に整理し、問題(What)を明確に定めることが大切だと感じています。その上で、問題がどこにあるのか(Where)、原因は何か(Why)、そして解決策はどうあるべきか(How)をロジックツリーを用いて整理することで、問題解決の思考を習慣化していきたいと考えています。

データ・アナリティクス入門

データに賭けた挑戦と発見

目標設定はどう? 「分析は比較なり」「何を明らかにしたいのか」という考えを軸に、データから得られる情報を見失わないため、まず明確な目標を設定しています。その目標に向かい、必要なデータやストーリーともいえる仮説を構築し、試行と検証を繰り返すことで、求める結果に近づけています。 データ表現はどう? また、取り扱うデータの種類に応じた加工方法やグラフの見せ方が重要であると感じています。そのため、状況に合わせて最適な表現方法を選ぶことに努め、いかなる場合も「とりあえず」での加工を避け、ビジネスにおける分析では、データに入る前に「目的」や「仮説」がしっかり整っていることを確認しています。 ランニング費用はどう? これまで部門費管理を想定していた中で、担当しているITツールのランニングコストについても、使用金額や実際の作業時間など、これまで取得してこなかった新たなデータ要素を活用していく計画です。これにより、必要なツールや今後の投資対象となるソフトウエアの分析に役立てようとしています。 データ収集の工夫はどう? さらに、データが不足している点を解消するため、まずは必要なデータの収集に力を入れると同時に、作業の効率化や一部自動化の導入も視野に入れています。今回の講座を通じて、時間の有限性を改めて認識し、これからはより計画的に活動していく所存です。

クリティカルシンキング入門

数字の捉え方を変える新発見への旅

数字の切り口をどう捉える? 数字の切り口には複数のパターンがあり、その見え方は切り方次第で変わるということがよく理解できました。しかし、切り口によっては解釈を誤る可能性もあるため、それをどのように防ぐかが重要なポイントだと感じました。 フレームワーク活用のヒントは? 分解の方法として3つのフレームワークが存在し、特にプロセスで切り分ける方法は今後意識して取り入れたいと思います。これらが効果を発揮するためには、ある程度の基礎知識やMECEといった考え方が必要であり、体系的に知識やスキルを習得する必要性を感じました。 管理会計で何を見極める? 現在の職務において、既存事業の理解には、売上構成などを管理会計的に分析することが重要だと考えています。ここでGailという手法が活用できると思いました。最初に事業を分解して特性を理解し、その特性から課題を洗い出していきたいと考えています。そして、今後の社会情勢と照らし合わせて事業の方向性を整理したいです。 整理と議論はどう進める? まずは既存事業部の情報収集を始め、その一方で管理会計の知識を身につけ、管理会計としてのプロセスを整理し、フォーマットを作成してみたいと思います。これにより自身の事業理解を深め、経験者とディスカッションを行い、現状の事業課題や今後の事業戦略に反映したいと考えています。

クリティカルシンキング入門

適切な問いが導くデータ活用術

適切な問いはなぜ? 今週の学びを通じて、問題解決における「適切な問いの設定」の重要性を改めて認識しました。明確に定義された「解決すべき課題」が、効果的な分析と解決策の導出につながることを学びました。また、データの適切な加工と分析によって情報を構造化し、視覚的に明確な形で提示する手法の有用性を実感しました。さらに、データの図表化が分析の精度向上に寄与することを体感し、実務での具体的な活用方法を見出すことができました。 現職での実践は? 「問いを立てる力」と「データの分析手法」を現職の業務改善プロジェクトで実践していきます。業務フローの課題特定に際しては、チームメンバーと「本質的な課題」を共有し、分析を深めるプロセスを確立しようと考えています。また、提案資料作成においてはデータの視覚化を通じて説得力を高め、経営層の的確な意思決定をサポートしたいと思います。 解決力高める秘訣は? 課題解決力を高めるため、以下の取り組みを実践します。毎週の振り返りで課題を整理し、本質的な問いを設定し、分析結果を図表化してチームで共有し、活発な意見交換を行います。わかりやすく論理的な資料作成を心がけ、改善を重ねます。また、学んだ内容を繰り返し実践し、定期的な振り返りで成長を目指します。これらの取り組みを通じて、実務での課題解決力を高めていきたいと考えています。

戦略思考入門

戦略思考で新製品評価を徹底分析

フレームワーク活用の意義とは? 戦略のフレームワークに関する知識を整理し、それを活用することで視野狭窄を避けるとともに、分析視点の抜け漏れを防げることが理解できました。また、戦略が自身の業務だけでなく人生設計にも応用できることを学びました。ただし、フレームワークの活用は戦略の第一歩に過ぎず、ユニークな戦略を立案するためには地道に考え抜くしかないことも再認識しました。 教授の意見をどう活かす? 自社の医療機器の新製品に対する教授からの評価を本国に伝える際には、教授のコメントをそのまま伝えるのではなく、戦略的に分析してから伝えることが重要です。教授の影響力や専門、属性情報に基づいてフィードバックの重要性を正当化し、指摘された改善ポイントを重要度と難度の二軸で分類し、優先順位を付けることが求められます。また、40名のドクターに新製品を使用してもらい、アンケートを集めましたが、ミクロな情報をマクロな視点で整理するために、戦略的な思考で分析していきたいと思います。 新製品評価の次のステップは? 新製品の評価については、まず社内のメンバーと方向性を決定し、その後、教授からのフィードバックを9月中旬までに分析し、本国と今後のアクションについて合意を得る予定です。さらに、40名の先生から得られたアンケート回答に基づき、ポジショニング戦略を立案します。

「分析 × 活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right