データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

戦略思考入門

有限資源が生む無限の可能性

どんな学びがあった? week1からweek5までの学びを振り返り、有限な資源を効果的に活用するためには、まず情報を収集・整理し、自分の判断軸に基づいて本質を見極めた上で優先順位をつけることが有効だと理解しました。今回の学びは、仕事以外にも応用できる点が特に印象に残りました。これまで分けて考えていた部分が、ライブ授業を通してプライベートの目標や趣味にも活かせることに気づき、限られた時間内で計画を立て、実行に落とし込めると感じました。 情報整理はうまくいっている? 日頃から情報収集や整理を行う際には、有限なリソースを意識し、時間をかけすぎないようアンテナを張っておくことが大切です。また、専門の取引先に情報提供を依頼するなど、工数管理を徹底する姿勢も必要だと考えています。 新制度の判断はどうする? 自社では捨てる・辞めるという行為について比較的寛容な面があるため、新しい制度を導入する際には試験導入を行い、実際に期待する効果が得られるかどうかを慎重に判断することが望まれます。判断軸としては、会社の方向性をしっかり把握し、経験則に頼りすぎないことが重要です。不明な点があれば相手と対話し、真意を確認するように努めたいと思います。 ニュースや情報はどう活かす? また、日常的にニュースや他社情報にアンテナを張るとともに、他社の財務諸表の分析を行うことで、内容によっては定点観測し派生する影響も把握できると感じました。さらに、専門知識を持つ取引先との接点を日頃から持つことも、情報の更新に役立つと考えています。 チームの連携はどう取る? 実行後には、捨てる・辞めるという判断もあらかじめ決めておくことで、スピード感を持って取り組むことができると実感しました。さらに、業務開始時にチームメンバーと判断軸を共有し、認識を統一することが円滑な業務遂行に繋がると感じています。

戦略思考入門

差別化戦略を活かした新しい挑戦

戦略の基礎をどう活かす? 今週は、差別化の重要性とそれに基づく戦略について深く学ぶことができました。ポーターの3つの基本戦略については、それが戦略の方向性を決定するためのフレームワークであることを理解しました。戦略の方向性を定める際には、コスト・リーダーシップ戦略、差別化戦略、集中戦略の3つを考慮し、競争優位性や戦略ターゲット層の広さを整理します。しかし、競争優位性は常に続くわけではないため、環境の変化に敏感になる必要もあると学びました。 VRIO分析の重要性は? また、VRIO分析では経営資源の評価において、経済価値、希少性、模倣困難性、組織の4つの要素が重要であると教わりました。その中でも、特に組織が競争優位を築くのに重要であることを理解しました。経営資源を持っているだけでなく、その活かし方も考えるべきであり、ビジネスを展開する上でこの視点を忘れないようにすることの大切さを再認識しました。 新たな手法をどう実践する? ポーターの3つの基本戦略やVRIO分析を、自分の所属する会社やプロジェクトで実践的に活用したいと考えています。特に、ポーターの3つの基本戦略は新規プロジェクトで用いることで、基本的な方向性をしっかり定めていきたいと思います。そして、実際の企業事例についても調査し、業界をリードする企業がどのようにコスト・リーダーシップ戦略を機能させているのかを分析したいと考えています。 過去の手法はどう活用する? これまで、3C分析やSWOT分析をよく活用してきましたが、今週学んだ分析手法は新しく、まだ十分には活用できていません。まずは自社のサービスに当てはめて使ってみることで、実践に移していこうと思います。そして、戦略立案の際には、商品の差別化ポイントを明確にし、今回学んだ分析手法を活かして戦略を練っていきたいと考えています。

クリティカルシンキング入門

数字の工夫で見つけた新発見の旅

数字活用のコツは? 数字を活用するためには、「加工の仕方」、「分け方の工夫」、「分解の留意点」を意識することが重要です。業務では数値を頻繁に使用しますが、「加工の仕方」には特に問題を感じていません。ただ、「分け方の工夫」に関しては、機械的に分けることが多かったことに気づきました。機械的に分ける場合と、柔軟に分けることで異なるグラフ結果が得られるという点は非常に新鮮でした。 上司へどう伝える? 上司へ説明する際には、数字がハイレベルで理解できることが重要です。そのため、今後は数字の分け方に注目し、客観的でわかりやすい資料作成に努めたいです。「分解の留意点」においては、MECEを活用し、全体をモレなくダブりなく定義し、分析することを心がけます。一度出した回答も再検証し、常に正しいかを確認することで、最短で正しい回答を導き出したいと思います。回答を出すとすぐに実践してしまう癖があるので、注意する必要があります。 プレゼンの工夫は? 「分け方の工夫」は、上司へのプレゼンテーションや報告にすぐに活用できます。具体的には、KPIやプロジェクト進捗において、達成に必要なものやすべきことを数値で分解し、機械的ではなく柔軟にグラフ化することで、視覚的にわかりやすく解決策を見つけやすくします。また、今週学んだ内容は業務全般に活用できるため、有意義でした。忘れないように反復して身につけたいです。 資料作成のポイントは? 現在準備しているKPIやプロジェクト進捗報告のプレゼン資料には、特に「MECE」、「分け方の工夫」、「分解の留意点」を取り入れたいです。重複する部分もありますが、MECEを用いて層別分解、変数分解、プロセス分解を試み、新たな発見をし、異なるグラフを用いることで説得力を高めたいと思います。回答の検証も行い、より効果的なプレゼンテーションにしたいと考えています。

クリティカルシンキング入門

小さな視点、大きな発見

データはどう見える? 一次データだけでは見えてこない傾向があるため、データをさらに細かく分け、グラフなどのビジュアル資料で確認することが重要です。 切り口の意味は? 刻み幅や意味のある切り口に基づく分け方を意識し、仮説を立てながらデータを整理することで、分け方によって異なる結論が導かれる点に注意が必要です。 全体像の正確把握は? 分解して検討した結果、特徴的な傾向が浮かび上がったとしても、それが全体を示すものではありません。すぐに結論を出さず、自分自身を疑う姿勢を持ち、思考の制約にとらわれないよう心がけることが求められます。MECEの考え方を活用しながら、全体を部分に分ける階層分解、売上を単価と数量に分ける変数分解、そして業務プロセスごとに分けるプロセス分解の手法を上手に使い分けるとよいでしょう。 分析の焦点は? 例えば、変数分解を用いてメンバーそれぞれの売上傾向を分析する際には、まず優れた成績の例と比較して単価や数量のどちらに課題があるかを明確にします。単価に問題がある場合は、コンタクト先を階層分解してどの層へのアプローチが不足しているのかを検討し、販売数量に問題がある場合は、プロセス分解を通じてどの業務プロセスに時間がかかっているのかや課題が潜んでいるのかを明確にすることが効果的です。 販売戦略の再考は? また、商品販売では、階層分解を活用して販売好調な商品の傾向を把握することが重要です。購入者を細かく分けることで、より明確なターゲット層を設定し、戦略の見直しに役立てることができます。 成果と速度の両立は? 実際の業務では、質の高い成果とともにスピードも求められます。トレーニングの積み重ねによって両立が可能だと考えていますが、実際の業務でどのように質とスピードを両立しているか、具体的な方法があればぜひお聞かせいただきたいです。

戦略思考入門

戦略思考で描く理想の未来

戦略思考はどう始める? 戦略思考とは、理想の自分や得たい結果、なりたい姿を実現するために、明確な目標を設定することです。そのためには、現在地である自分から、目標を達成した自分への道のりを描く必要があります。資源は有限であるため、時間や労力を無駄にしないよう、最速かつ最短で到達する方法を考えることが重要です。つまり、理想の自分を描き、現在の自分に必要なものと不要なものを取捨選択して行動に移すことが戦略思考といえます。 部署の目標はどう決める? 私が所属する部署はバックオフィスです。ここでの目標は新規業務の拡大と新規事業への参入です。業務や事業において目標が明確でないと、何を努力すべきかが分からず、行動に迷うことがあります。どの業務を拡大するのか、どんな事業に参入するのか、細かく決められていないときは、何が必要で不要かを判断しづらくなります。このため、目標を立てることは不可欠であり、それが意識付けや意思決定、そしてモチベーションを支える重要な柱となります。 議論はどう広がる? 個人や部署の目標を設定すると、建設的な議論が生まれ、必要な学習や資源の確保といった様々な思考が展開されます。その結果、チームとして目標に向かって進むための計画を立てることができます。 戦略習慣は何が鍵? 戦略的思考を習慣化し、体得するためには以下の行動を継続することが大切です。まず、仕事やプライベートなど何事もゴールを定める習慣を身につけること。そして、ゴールまでに必要なことや不要なことを分析する習慣を持つことです。分析の結果から最良の計画を立て、実行から得た学びを次回に活かすことも重要です。また、様々な経験を通じて自分の得意・不得意を見極め、独自性を育む自己啓発も必要です。これらを一人で行うのではなく、多様な情報源から得た情報を活用してブラッシュアップを続けることも大切です。

データ・アナリティクス入門

STEP活用で見える問題解決の極意

分析と課題の関係は? 今週の学びでは、これまでの講義全体を振り返る中で、改めて以下の点の重要性に気づきました。まず、分析とは比較を通じて違いを明確にする作業であること。そして、問題解決には「What(何が問題か)」、「Where(どこに問題があるか)」、「Why(なぜ問題が起きたのか)」、「How(どう対応するか)」という4つのSTEPがあり、この順に検証することで、チーム内で適切な意思決定や対応策の精度向上につながるということです。また、仮説思考の重要性も学びました。一方で、仮説にとらわれず現状のデータから何が分かるのかを整理する必要性も感じました。 目的は本当に何? これまでデータ分析=分かりやすく加工する技術(プレゼンテーション資料や表計算ソフトのスキル)と捉えがちでした。しかし、本講座を通して、何よりも分析する「目的」が重要であり、見せ方や手法だけでなく本質に気づくことができました。 データから何が見える? 現業では直接データを加工する機会は少ないものの、提示されたデータから「なぜこの課題意識を持ち、どのように分析したのか」という分析者の視点を意識して読み解くことが求められています。また、クリエイティブ業務においては、どうしても「HOW」から入りがちなチームメンバーに対し、この問題解決のSTEPを活用して共通の目線を持つことが有効に感じられます。 仮説も大切なの? さらに、新規事業の立案時にも、従来のフレームワークに加えて仮説思考を取り入れ、「データを分け、整理し、比較する」という基本事項を怠らず進めていく重要性を実感しました。 実践はどう進める? 実際に問題解決のSTEPを業務で取り入れ、チーム内での情報共有や課題の整理を通じて、よりシャープな打ち手(How)を見出すための一助になっていると感じています。

データ・アナリティクス入門

データが教えてくれた学びのヒント

代表値で全体像は? データをどのように加工して把握しやすくするかを学びました。まず、代表値を求めることで全体像をシンプルに掴む方法を理解しました。代表値としてよく使われる平均値は、データ全体の傾向を捉える上で便利ですが、ばらつきを反映しにくいという欠点があります。そのため、目的に応じて加重平均、幾何平均、中央値などの手法を使い分ける必要があると感じました。 偏りはどう捉える? また、データの偏りを把握するために標準偏差が有効であることを学びました。標準偏差は、複数のデータが平均値からどれほど離れているかを示し、ばらつきを具体的に表現する指標として役立ちます。 グラフと予測は? さらに、グラフ化されたデータにアプローチする方法も学習しました。グラフ上の特徴的な部分に着目することで、問題点を深堀りしやすくなるという点や、グラフを見る前に予測を立て、その予測と実際のデータを比較する方法が、分析の深化に効果的だと感じました。データ同士を比較し、仮説を立てることで、次に分析すべき方向性が明確になるのだと実感しました。 代表値の使い分けは? 代表値の選び方についても触れました。たとえば、年度ごとの収益を分析する際、単に平均の粗利額を示すのではなく、プロジェクトごとに異なる売上金額を加味して加重平均を採用することで、より適切な表現が可能になると考えました。また、ばらつきの表現に標準偏差を用いることについては、これまであまり意識していなかったため、今後は積極的に活用していきたいと感じました。 学びをどう活かす? 今回の学びを通じて、データを多角的に把握することの重要性を再認識しました。今後は、常に自分の予測と実際のデータとのギャップに注目し、過去のデータや他のプロジェクトのデータとも比較しながら、具体的な仮説を立てて深堀りを進めていきたいと思います。

データ・アナリティクス入門

ロジックツリーで描く未来

4視点の意義は? 問題解決のステップとして、「What」「Where」「Why」「How」という4つの視点があることを学びました。関係者間で「あるべき姿」や「ギャップ」の認識を共有する重要性にも触れ、特に問題を特定する際には、単なるアイディアに頼らず、定量的な数値を比較することで、より客観的に捉えられる点が印象的でした。 原因はどう見る? また、原因分析においてはロジックツリーを用いることで、漏れなく重複なく問題を分解できることを実感しました。全体を複数の部分に分ける「層別分解」や、詳細に細分化して検討する「変数分解」といった手法も、新たな気づきとなりました。 合意形成は可能? チームプロジェクトでは多くの関係者が参加するため、事前に「あるべき姿」や「ギャップ」を共有し、チーム内で合意形成をとることが必要だと感じました。特に、最初の「What」が明確でないと、後のステップで方向性がぶれてしまうため、優先的に確認しながら進めることが重要です。 ロジックの活用は? MECEの考えを意識していましたが、実際にロジックツリーを書き起こして検討する機会が少なかったことは反省点でした。今後は、層別分解と変数分解をそれぞれ活用し、チーム内の合意形成に役立てていきたいと考えています。 手順の意図は? また、クリエイティブな業務では、Howのアイディアから発想してしまいがちです。そのため、4つのステップの順序に沿って思考する癖をつけることが必要だと感じました。日常生活では、電車内の広告などを見ながら、「何を狙っているのか」「どのような問題が起こり得るのか」「その原因は何か」「どうすれば解決できるか」といったプロセスを意識してみるとよいでしょう。さらに、業務中にも毎日5~10分間、ロジックツリーを用いてざっと洗い出す習慣を取り入れていきたいと思います。

デザイン思考入門

心と色で拓くビジネスの未来

色で感情は伝わる? まず、自己紹介の際に「今の気分は何色か」を色で表現するというお題に取り組むよう指示された点が印象に残りました。最初は意外に感じたものの、先生から「デザイン思考では物事をビジュアル化することが重要」と説明され、なるほどと納得しました。普段、仕事や私生活でさまざまな表現方法を用いているものの、色で気持ちを表すという発想はあまり意識していなかったため、新鮮に感じました。 デザインはなぜ重要? 次に、「ビジネスプランからデザインへ」というテーマの講義で、改めて気づかされることがありました。ビジネスを生み出す際、市場価値や競合状況、資金繰りなどの分析が重要視されると同時に、顧客そのものやその行動に注目し、顧客体験価値を最大化するアプローチが存在することを学びました。この考え方が、「初めから万人ウケするものは作れない」という現実を実感させ、デザイン思考の価値を感じさせるものでした。 新発想の壁は? 現在、私はSIerに勤め、新たなビジネスプランを考える立場にあります。IT業界では、AIを活用した取り組みが多く見受けられますが、既存サービスについては既に多くのアイディアが出されている状況です。そのため、従来のマーケット分析だけではなかなか新しい発想にたどり着くのが難しいと感じていました。 共感はどこで生まれる? そこで、今回学んだ「人間中心」や「顧客体験価値を最大化する」という視点で、まずは一般企業の従業員の中から特にどの部署・誰に焦点を当て、どれだけ共感できるかを試みることにしました。これまでは、ビジネスを考える際「モノ」ではなく「コト」に着目していましたが、具体的なイメージがつかみにくく、行き詰まりを感じていました。今後は、改めて「ヒト」を重視し、顧客の行動や体験に寄り添いながら、新しいビジネスの可能性を探っていきたいと思います。

データ・アナリティクス入門

データ分析とマーケティングが結ぶ新たな気づき

すべての学びは繋がる? 6週間の講義を振り返り、最も印象的だった学びは「すべての学びは結び付いている」ということでした。もともと興味を持っていた分析手法やその評価方法には多くの新しい発見があり、非常に刺激的でした。しかし、分析に基づいて仮説を立て、それを生かすためにはマーケティングの知識が必要だということに気付きました。過去に学んだことと今学んでいることがつながり、新しい視点が得られたこの体験は非常に刺激的でした。 マーケティングとデータ分析の相乗効果 知ったつもりでいたマーケティングに関するフレームワークをデータ分析で活用することにより、学びが独立したものではなく、結び付けることで価値が生まれるのだということを実感しました。この経験が一番の収穫だったと思います。 異動後の目標と実践 講座の受講期間中に営業部門から希望する企画部門への異動が実現しました。異動までにデータ分析やマーケティングに関する学び直しを行いたいと思っています。講座で学んだデータ分析の基礎的な手法は、現在の部署でも十分活用できます。まずは今の部署で可能な分析を行い、学びを実践に移したいと考えています。まずは営業部門の販売実績から現状を把握し、マーケティングのフレームワークを活用して今後取るべき打ち手について考え、同僚と意見を共有したいと思います。 新しい提案とその影響 異動するまでに今回学んだデータ分析手法を用いて、営業部門の現状分析やそれに基づいた仮説の立案を実施したいと考えています。現部署では経験や勘を重視する風潮があり、それ以外の判断基準がない状況です。たとえ私の提案が採用されなくても、新しい考え方の実例を示すことで変化のきっかけとなれば良いと思っています。そしてこの経験、特に反省点を次の部署で生かし、新しい環境でも様々なことに挑戦してみたいと思います。

マーケティング入門

潜在ニーズを引き出す新戦略の魅力

潜在ニーズをどう見極める? 顧客の潜在ニーズを見極め、それを形にすることの重要性を改めて理解しました。特に、顧客が自分でも気づいていない「潜在ニーズ」を引き出す手法として、行動観察やデプスインタビューが効果的であることを学びました。また、曖昧なニーズに基づく商品開発にはリスクが伴うため、価格競争を避けるためにSTP分析を活用することで、ターゲットの絞り込みやポジショニングの明確化が重要であることが強調されました。さらに、ペインポイントを特定し、それを解消して「ゲインポイント」に変える視点が、新しい価値創造に直結すると感じました。全体を通じて、マーケティング視点の重要性と顧客の立場に立ったプロセス構築の鍵を再認識しました。 顧客接点にどう活かす? 顧客との接点を持つ企画や商品開発、サービス改善の場面で、これらの知識は有用だと感じました。具体的には、顧客が不満や不便を抱える「ペインポイント」を見つけ、それを解消するサービスを提案・実装していくことです。また、STP分析を活用し、自部署が競争優位を築けるポジションを明確にしつつ、顧客の「AIDMAモデル」に沿ったプロモーションを行うことで、効果的なマーケティング戦略を立案することが可能だと感じました。私の業務では営業店が主要な顧客であるため、そこに焦点を当てつつ、次なる顧客層の獲得に向けて行動することが急務です。 既存と新規、どちらに注力すべき? 既存業務の拡充と新規業務に向けた促進行動の両方に目を向け、行動していかなければなりません。既存顧客層については、顧客インサイトの把握が容易な環境にあり、日常の不満点やペインポイントの洗い出しを進めていきます。一方、新規領域においては未知の分野が多く、確定的な判断はできませんが、顧客満足に基づいて利益を得るという学びを活かし、行動計画を図っていくつもりです。

「分析 × 活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right