クリティカルシンキング入門

データで発見!POS活用の新視点

グラフ化はどう効果的? 数字をグラフ化することによって、新たな発見が得られることがあります。また、比率の計算を通じて、全体に占める割合を分かりやすく理解できます。これまであまりグラフ化を行ってこなかったので、これからは積極的に取り組んでいきたいと思います。反対に、「データを加工しないままだと、重要な点を見落とす可能性がある」ということも意識して注意を払いたいと思っています。 分解方法をどう見直す? データの分解の仕方についても、自分が考えていたもの以外にさまざまなアプローチがあることに気づかされました。「データの分け方を工夫する」という段では、二つの分け方から「大学生に集中している」という点を見落としていました。無意識のうちに「同じ年数の幅で比較する」という方法に固執していたようです。また、「分解をする際の留意点を知る」では、解釈の仕方の誤りに気がつきました。一度解釈をした後でも、もう一度立ち止まって「本当にそうか?」と再考する必要性を改めて認識しました。 分解の意義は何? 講義を通じて、「分解してみても何も見えてこないことは失敗ではない」「迷ったときはまず分解を試みる」「分けていくことが理解を深めるための手段」であるという、データを分解して解釈する際のポイントを学ぶことができました。 POSデータの活用は? 私が従事している小売業においては、業務で頻繁にPOSデータを扱います。顧客の動向を把握するために非常に有効なので、POSデータを分析するときにはこの学びを実践していきたいです。特に、グラフ化を意識して視覚的に理解することに重点を置いています。 グラフ化の効果は? 具体的には、POSデータを週ごとにExcelで表にして、グラフ化を通じて視覚的に把握します。そこから見えてきた変化をもとに、今後の方向性を決定し、業務に生かしていきます。毎週さまざまな切り口を試し、効果的な加工の方法を探っていく予定です。

リーダーシップ・キャリアビジョン入門

理論で実現!やる気UPの秘訣

理論はどう活かす? 今回学んださまざまな理論を通じて、モチベーションの向上方法について再確認することができました。業務の中で実践している手法は経験に基づくものですが、マズローの欲求の五段階説やハズバーグの動機付け・衛生理論といった理論的枠組みに沿って現状の要因がどの位置にあるのかを明確に把握することで、より高い効果が期待できると感じました。 まかせ方はどう? また、実行段階での「まかせ方」については、干渉を最小限に抑える努力や、プロセスどおりに実施できているか、当初の想定通りの結果が出ているかを定期的にフォローする点が十分でなかったと認識しました。各地で業務を進める中、つい口を出してしまったり、細かなフォローが不足していたと実感しました。 フィードバックはどう? さらに、効果的なフィードバックについても、情報伝達はできていたものの、相手が行動を立て直すための支援となるフィードバックが不十分であったと理解しました。 会話はどう見える? 日常のコミュニケーションでは、相手の様子や言動にしっかりと注意を払い、変化に気付けるよう意識を高めたいと考えています。また、定期的な面談や業務の振り返りの機会を活用し、本人に気付きと学びを促すフィードバックを行うことで、より効果的なサポートを実現したいと思います。 動機づけはどう? これらの取り組みを通じて、職員一人ひとりがモチベーションや仕事への動機づけを深く理解し、意欲的に働ける環境を整えることで、強い組織づくりに必要なエンパワーメント力を養っていきたいです。 未来はどうなる? 今後は、面談や振り返りの際に理論をもとに傾向を分析し、各人が意欲的に取り組める業務の選定や依頼の方法を検討することも視野に入れています。状況や体調などの変化を踏まえ、まずは相手の理解を深める「聞き手」としての役割を大切にしながら、気付きと学びを促す機会や能動的な実験ができる環境づくりに努めます。

データ・アナリティクス入門

問題解決への仮説立案と検証の実践記

問題発見にどのフレームワークを適用すべき? 問題発見のステップとして、まずWhereのフェーズでどこに問題があるかを考えます。この際、仮説を立て、その仮説が成り立つのかを検証するためにデータを集めます。仮説を立てるときには、フレームワークも有効です。代表的なフレームワークとして、3Cや4Pがあります。 3Cは「顧客」「競合」「自社」の三要素、4Pは「Product(製品)」「Price(価格)」「Place(流通)」「Promotion(広告・販売促進)」を指します。これらのフレームワークを使って仮説を立てると、どこに問題があるのかが明確に見えやすくなります。 4Pを用いた仮説とは? 例えば、今回学んだ例では4Pを使いました。製品については「大学生にとって魅力的な講座ではないのでは?」、価格については「大学生にとって高すぎるのでは?」、流通については「立地が悪いのでは?」、広告については「大学生に認知されていないのでは?」と考えることができました。 仮説検証に必要なデータの収集方法 仮説には結論の仮説と問題解決の仮説があります。これらを過去、現在、将来の時間軸で考えることも重要です。仮説を検証するためのデータの集め方として、現存するデータでの検証方法や新しいデータを集める方法も考慮します。 見逃しやすい観点を見直すには? 現在、分析を行いながら、起こっている現象に対して、いくつかの仮説を立てています。しかし、振り返ると今回学んだフレームワークに当てはめた場合、観点が漏れていることに気づきました。今回学んだことを活用して改めて考えてみたいと思います。 問題の仮説を具体的に書き出し、その際にはフレームワークを適用します。仮説には必要なデータもセットで書き出し、最低でも四つの仮説を立てます。そして、その仮説が正しいのかを来週までに仮の結論を出しておきます。この仮説と検証のプロセスを他人に説明し、共有していく予定です。

データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

デザイン思考入門

顧客に寄り添う心に響く学び

顧客中心の真意は? デザイン思考の根本は「どこまでも顧客に関わろうとする人間中心」であることを理解しました。その特性から、仮説検証や分析に偏ったアプローチと比べると、ビジネスシーンでは特定の顧客に限定されたサービスや商品に偏りがちになるのではないかという懸念もあります。しかし、市場環境を考えると、初めから万人ウケするものを作るのはほぼ不可能であり、結果として「当たり障りのない、誰にもハマらないもの」に陥ってしまう恐れがあります。データや数値だけでは本当に解決すべき課題にたどり着くことはできず、市場拡大の基本としてアーリーアダプターを捉えることが重要だと考えています。 本質課題は何か? このような背景から、ヒット商品やヒットサービスを生み出すためには、まず具体的なペルソナを設定し、相手を深く知り、共感することから顧客の本質課題を発掘する必要があると考えました。さらに、課題解決に向けた柔軟な発想へとつなげられるのではないかという見方を得ました。 どこで成長する? この講座を通しては、①顧客の本質課題を引き出す手法、②相手への共感とその伝え方、③プロダクトの具体化に向けたビジュアル化の手法という3点を重点的に学んでいきたいと思っています。担当している商品の拡販戦略を検討する際には、顧客課題をより深く理解し、それをメッセージ作りに反映させること、そして顧客に寄り添い共感を伝えるコミュニケーションを心掛けたいと考えています。「当たり障りない」から脱却し、具体的なペルソナを通じて本質課題を引き出すことを目指します。 直近の実践は如何に? また、学んだスキルやフレームワークは、現状担当している社内研修の企画にも積極的に取り入れ、実践していく予定です。直近では顧客ヒアリングの機会があるため、講座で学んだことをすぐに生かし、次年度の実行計画策定の際にもデザイン思考のアプローチを意識して活用していきたいと思います。

データ・アナリティクス入門

データの本質を掴む!実務に活かす分析技術

分析の本質とは? この学びを通じて、分析の本質を理解することができました。分析とは「比較」することが核心であり、特に条件を整えた「Apple to Apple」の比較が重要です。まずは「何を明らかにしたいのか?」を明確にし、そのために「何と何を比較すべきか?」を定めることが大切です。 棒グラフ作成の注意点は? 印象に残った点として、棒グラフの縦軸と横軸など、細かな部分にまで注意を払ってより分かりやすく伝えることが求められるということです。例えば、縦軸は上がった・下がったを示し、横軸は要素間の比較を表現します。普段は手元のデータだけで判断してしまうことが多かったと気づかされました。この分析の本質は、課題解決のための分析決定だけでなく、解決策の実行後の効果検証にも活用できると感じました。 具体的な応用法は? 具体的な応用として、解決策の効果を比較することが挙げられます。解決策を導入する場合としない場合での比較を行い、条件をできるだけフェアに揃えることが重要です。この考え方を業務に活かすことで、顧客の課題を定量的に解決する方法を確立し、納得できる成果を提示できるようになると期待しています。 より良い分析へのプロセス この知識はすぐに実務に活用できるもので、特に分析の本質を理解できたことは大きな収穫です。今後、以下の流れを意識して分析の質を向上させていきたいと思います。 まずは課題の明確化から始め、何が課題なのかを特定し、解決するためにどのような分析が必要かを考えます。次に仮説を設定し、それを検証するためのデータを収集します。重要なのはフェアな条件で比較できるようにデータを集め、分析結果を分かりやすく可視化することです。 最後に、結果を解釈し示唆を整理します。ただ結果を提示するだけではなく、その傾向や含意をまとめ、目的に沿った分析であるかを確認します。この一連のプロセスを通じて、より質の高い分析を目指していきます。

戦略思考入門

ROIで学ぶ!経営資源の効果的活用法

何を学んだ? 今週は、これまでの学びを整理し、各週の要点を再確認することに集中しました。以下は、特に自分にとって重要だと感じた部分をまとめたものです。 どう活用する? まず、自社や自身の優れた経営資源を分析し、理解することは重要であり、状況に応じてそれらをどのように活用するかを考える視点が不可欠です。また、個人のリソースには限りがあるため、やることと捨てることの優先順位をつける必要があると再認識しました。惰性で業務を進めるのではなく、判断基準を持ちながら考えることが求められます。そのためには、定量的なエビデンスに基づき、さらにROI(投資対効果)を考慮する重要性に気づきました。 視野を広げるには? さらに、自身の視野狭窄や見落としを防ぐためには、集合知を意識して他者と相談し、意見をすり合わせることが大切です。 現部署の取組みは? 現部署では、既存業務の効率化・高品質化を目的としています。また、新規業務の構築やフロー作成にも関わる機会があり、それぞれに適切な目的や目標設定が必要です。日々のMTや資料作成時にはFWを活用できます。 助けを求めるには? 個人での業務には限界があるため、大きな成果を達成するには周囲の助けが必須です。その際、伝えるべき情報を正確に伝え、納得感や理解を得るには、FWを活用した情報整理やKSF(重要成功要因)や課題の特定、戦略立案が不可欠だと感じました。 新知識の収集は? 新規業務の担当窓口に任命されましたが、未知の業界であるため、新たな知識・スキルを収集し続け、現状の業務フローを理解する必要があります。3C分析を中心に使用して理解度を深め、顧客の潜在ニーズや課題を抽出することを目指します。 習慣化はどうする? 活用方法やタイミングについてはまだ慣れていないため、自分のスタイルを見つけるべく、地道に繰り返し実践して習慣化する努力を続けます。

データ・アナリティクス入門

仮説と検証で切り拓く成長の軌跡

仮説と検証の意義は? 日々の実務経験を通して、仮説には大きく「結論の仮説」と「問題解決の仮説」があること、また仮説と検証をセットで考える重要性を実感しました。正しい仮説を用いることで、各自の検証マインドが向上し、説得力が増すとともに、ビジネスのスピードや行動の精度が上がると感じています。 良い仮説の作り方は? また、良い仮説を立てるためには、普段から知識の幅を広げ、ラフな仮説を積極的に作成する意識が必要だと納得しています。「創造的な仮説を考えるコツ」として、常識を疑うこと、新しい情報と組み合わせること、そして発想を止めないことが挙げられ、これらはデザイン思考とも通じる部分があり、組み合わせて実践するとより効果的だと感じました。 新たな分析手法は? 普段から使うフレームワークだけでなく、あまり意識していなかった分析手法を取り入れることで、仮説をより広い視点から考えることができると実感しています。例えば、従来の分析手法に加え、最新の視点での分析である5Aカスタマージャーニーを通じた気づきを得るなど、知識の深化が仮説の幅を広げる一助となっています。 新規施策の仮説は? 店舗オペレーションの改善や新規施策の導入時には、常に仮説と検証を繰り返しており、今後もあまり意識していなかった分析フレームワークを積極的に活用することで、より多様な仮説を立てる努力をしたいと考えています。また、セグメンテーションの切り口にも着目し、普段とは異なる視点からデータを考察する習慣を身につけることで、全体の分析力を向上させたいと思います。 マネージャーの挑戦は? さらに、チームマネージャーとしての役割を果たす中で、自らが率先して行動すること、的確な質問によってメンバーの成長を促すこと、そしてチームメンバーと役割分担を行いながら仮説と検証を実践することを意識的に業務に取り入れ、チーム全体のスキル向上に努めたいと考えています。

データ・アナリティクス入門

多角的仮説検証で未来を拓く

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、これを正しく用いることで個々の仕事に対する検証マインドが向上し、説得力を高める効果が期待できます。また、ビジネスのスピードや行動の精度を向上させる点でも大きなメリットがあります。 多角的視点ってどう? 仮説を立てる際は、1つの切り口に固執せず、複数の視点からアプローチすることが重要です。異なる視点を網羅することで、問題の原因や解決策を多角的に捉えることが可能になります。フレームワークを活用すれば、自分の思考の幅を広げながら、多様な仮説を漏れなく立てることができるでしょう。 仮説の種類は何? また、仮説には「結論の仮説」と「問題解決の仮説」という2種類があり、時間軸に沿ってその内容が変化することも特徴です。仮説検証のプロセスでは、既存のデータ(売上数値やアンケート結果、市場調査レポートなど)を活用する方法と、必要に応じて新たにデータを収集する方法が考えられます。 反証データは必要? 検証にあたっては、自分の仮説を支持するデータだけではなく、反証となるデータも積極的に集めることが不可欠です。都合の良いデータだけを選別すると、結論が誤るリスクが高まるため、幅広い視点から情報を収集する姿勢が求められます。 各視点はどう整理する? 以上のように、仮説は「What」「Where」「Why」「How」といった4つの視点を意識して整理する必要があります。仮説の網羅性と多角的視点、そして反証データを意識することで、広告運用の分析の質や精度向上につながると感じました。たとえば、キャンペーンの予算配分の最適化やランディングページの改善、広告クリエイティブの効果向上、新たなターゲティングの発掘などに対して有効なアプローチだと思います。ただし、優先順位の付け方がまだ未熟な部分があるため、初めはさまざまな切り口での仮説検証に取り組んでいきたいと思います。

データ・アナリティクス入門

仮説と問いで広がる学び

結論と問題は何が違う? ケーススタディを通して、私は結論の仮説と問題の仮説の違いについて学びました。これまで結論と問題の仮説を意識することはほとんどありませんでしたが、結論の仮説は答えを先に仮定してから分析を進める手法であり、問題の仮説は問題の本質や真因に迫りながら「なぜ?」と問い続ける流れであると理解するようになりました。 考えの整理はどうする? また、仮説を立てる際には、自分の考えを整理し、納得感や他者への説明力を高めるために、網羅性が非常に重要だと実感しました。誰が読んでも理解しやすいようにフレームワークを活用することで、従来の方法に比べ、思考が整理され、見やすく理解しやすいアウトプットが得られると感じています。 時間軸の重要性って? さらに、課題を考える際には、過去・現在・未来という時間軸で捉えることが重要であると学びました。問題がいつ発生しているのかを明確にすることで、現在の状態を正確に把握し、なぜその状況になったのか過去を振り返り、将来の理想像に向けて現状で何をすべきかを考えることで、より納得のいく議論ができると感じています。 企画で何を考える? 通常の業務において新商品や新機能を企画する際は、価値(魅力)とコストのバランスを考慮します。コストを削減する方法を検討する過程では、複数の仮説を立てるとともに、迅速に検証を行いアウトプットに結びつけることが求められます。うまくいかなかった仮説に対しては、なぜ失敗したのかをしっかり確認し、次につなげることが大切です。 国際展開の特徴は? また、現在の業務では、同じような製品を複数の国で展開しています。各国の特徴や強み・弱みをフレームワークを用いて整理し、そこから抽出した課題に対して改善策をいくつかの仮説として立て、検証を実施しています。このプロセスをグループ内で共有することで、より広い視野での理解が進み、全体のパフォーマンス向上につなげています。

データ・アナリティクス入門

正しい比較で未来を切り拓く

本質をどう捉える? 今回の学びを通じて、データ分析の本質は「適切な比較」にあると再認識しました。これまでは無意識に比較を行っていましたが、今後は目的意識をより明確に持ち、比較対象や条件の設定に一層注力する必要があると感じています. 比較対象は何のため? まず、比較対象の選定についてです。これまでは目的が単純なため、対象の選定に深い検討を加えることが少なかったですが、今後は「何を知るために、何を基準にするのか」という明確な目的を持って、比較対象を吟味していきたいと考えています. 条件統一の意味は? 次に、分析の条件を統一することの重要性を学びました。分析したい要素以外の条件を揃えることで、因果関係にある要素を正確に特定できるようになり、精度の高い結論に導くことが可能となります. 施策例から何を学ぶ? 例えば、自部門の利益率向上を目指す施策立案の場面では、現状の課題を明確にし、改善策を具体的な数値に基づいて提案することが求められます。そのためにも、前年同期や目標値といった明確な基準を設定し、条件をしっかりと統一した上で、定量データを活用することが重要です. 実務での実践法は? 実務に活かすための具体的な行動としては、まず「基準」を明らかにした比較対象の選定があります。単に数値が低いと結論づけるのではなく、何と比較するかを明確にし、改善のポイントを浮き彫りにします。また、条件を整えた上で要因分析を実施し、真の要因を特定して精度の高い対策を講じることが求められます. 変化にどう向き合う? なお、実際の業務では状況の変化やさまざまな要因により、分析の目的や前提条件が途中で変化することもあると感じています。そのような状況下で、皆さんはどのように方向性を定め、納得感のある結論を導いているのか、また前提条件が揺らいだ場合の軌道修正のコツなどについて、意見交換ができればと思います.

戦略思考入門

事例で学ぶ!本物の戦略力

戦略立案の意義は? 具体的な戦略立案のフレームワークの有効性を学び、多角的な競合分析の視点が印象に残りました。顧客の選択肢となるあらゆる業態を競合と捉えることの重要性を実感するとともに、模倣されにくく持続可能な競争優位を生み出すためには、VRIO分析を活用し自社の資源や能力を評価することが不可欠だと理解しました。また、コストリーダーシップ戦略、差別化戦略、集中戦略という3つの基本戦略を応用し、市場環境や自社の強みを踏まえた長期的な戦略の構築の大切さも学びました。 実務の成果は何? さらに、外食業界における実務の中で、戦略学習の成果が新業態開発や商品開発に直結することを確認しました。競合を多角的に分析し、VRIO分析で自社の強みを引き出す差別化戦略や、ポーターの3戦略を参考にターゲット顧客に合わせた独自価値の提供が重要であると感じました。こうしたアプローチにより、健康志向に対応した業態開発や、多角的な視点からの商品開発、さらにはSNSなどを活用した効果的なマーケティングが実現できると考えます。組織全体で戦略を共有し、実行力を高めることも大切なポイントです。 行動計画の詳細は? 客数増加、収益構造改革、新規出店に向けた行動計画は以下の通りです。まず、新業態開発では、市場調査で顧客ニーズと競合状況を把握し、VRIO分析により自社の強みを明確化した上で、コンセプトや持続可能な収益モデルを構築します。次に、既存業態改革では、ABC分析を用いてメニューを見直し、高収益メニューの促進や、オペレーションの効率化、また顧客満足度調査を実施してサービス改善に取り組み、デジタル技術の活用によりリピート率を向上させます。最後に、新規出店では、エリアマーケティングによって最適な出店エリアを選定し、多様な店舗フォーマットの開発と投資リスクの最小化を図る方針です。これらの行動を通じて、企業としての競争優位の確立と持続的な成長を目指します。
AIコーチング導線バナー

「分析 × 活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right