クリティカルシンキング入門

手を動かして見つける新発見

視点の違いって何? データの断面によって得られる情報はそれぞれ異なるため、まずは様々な視点からデータを捉えることが大切です。データを並べ、一度エクセルなどで手を動かしながら、細かい作業を加えることで新たな発見につながります。 仮説の鍵は何? また、切り口を出すためには仮説を立て、自ら考える姿勢が必要です。イシューに対しては、どんな考え方があるかを因数分解するように整理し、多角的に検討する手法が効果的です。 答えの見極め方は? さらに、データ分析では、求める答えを明確にしたうえで仮説を構築し、切り口を設定することが求められます。自分の考えだけでなく、周囲の意見も取り入れることで、より多角的な視点から論点を整理し、深い理解につながるでしょう。

戦略思考入門

経験が磨く経済性の真髄

新たな経済の考え方は? 規模の経済性、範囲の経済性、ネットワークの経済性という初めは聞いたことがなかった用語も、学んでいくうちにその概念が理解できるようになりました。 拡大のリスクはどう感じる? 特に、規模の経済性については、単に規模を拡大すれば利益が得られるわけではなく、無計画な拡大がかえって不経済を招く可能性があるため、慎重な検討が必要だと感じました。 習熟効果をどう捉える? また、習熟効果については、日常の業務で実際に体感しています。たとえば、類似した開発作業では、一度経験することで次回以降の作業効率が上がり、工数が削減される効果が見られます。さらに、その経験をノウハウとしてまとめることで、さらに大きな効果を発揮できると実感しています。

データ・アナリティクス入門

実践と数字で磨く学びの軌跡

テスト条件はどう? ABテストの留意点として、テスト期間は同一にし、その他の要素は変更しないことが重要だと強調されています。これは、結果の信頼性と比較可能性を担保するために欠かせないポイントです。 数字の根拠は? また、総合演習課題では、根拠としてどの数字を用いるのが最も説得力があるかを考える点が印象的でした。さらに、課題に対しては複数の仮説を網羅的に立て、実際の検証を重ねていくことで、真の課題に迫るアプローチが求められます。 最適解はどう選ぶ? 加えて、サービス企画においては迅速かつ効率的に最善策を選び出すことが重要であり、開発者との連携の中で必要な局面にABテストを活用することで、より効果的なサービスリリースにつながると感じました。

リーダーシップ・キャリアビジョン入門

若手育成でプロジェクト成功への道

仕事を任せる重要な理由は? 仕事を任せる際は、まずその背景や目的を伝えた上で一度任せてみることが重要です。そして、適切なタイミングで進捗を確認し、必要に応じて軌道修正を行いながら最終形を目指します。振り返りも定期的に行い、良かった点や課題となった点を整理することが大切です。 若手へのアプローチは? モチベーションの上がり方は個人によって異なるため、それぞれに合ったアプローチを心がける必要があります。特に新入社員や若手メンバーに対しては、この方法が効果的に活用できそうです。DX推進部に異動したことで若手メンバーとの関わりが増え、自分がまとめ役になることが多い中で、これらの方法を実践することでメンバーの成長とプロジェクトの成功に貢献できると感じています。

クリティカルシンキング入門

多角的視点で拓く課題解決

なぜ視点を広げるの? どうしても最初に目に付いた課題に意識が偏ってしまうことが自分自身の課題だと痛感しました。複数の視点から問いを掘り下げ、その中で最適な解決策を選ぶプロセスを何度も繰り返すことで、自然にその手法が身につくレベルへと高める必要があると感じています。 どうして全体をとらえる? また、私の業務では人事制度の課題を分析し、効果的な対応策を企画・実行することが求められています。これまで、分析しているつもりであっても、全体を網羅する視点が不足しており、目につきやすい課題に飛びついて対処してしまう傾向がありました。今後は、課題を細かく分解し、複数の観点から最適解を選ぶプロセスを、自然に実践できるレベルに自分を鍛えていきたいと考えています。

クリティカルシンキング入門

学びを投資に!資料作成の秘密

視覚表現はどう伝える? 授業を通じて、メッセージを正確かつ分かりやすく届けるには、グラフや文字、そしてそれらを組み合わせたスライドなど、視覚的表現を工夫する必要があると再認識しました。特に、データの特性に合わせたグラフの選択や表示方法、文字のフォントや色の使い方が、情報の伝達に大きく寄与する点を学びました。 提案資料はどう作成? この学びを、今後の投資商品の提案資料に活かしていきたいと考えています。多数のデータを用いる提案資料においても、分かりやすいグラフや明快な文章を組み合わせ、読み手が一目で内容を理解できるよう工夫する必要があると感じました。特に、資料全体の体裁や視認性にこだわることで、効果的な提案資料が作成できると考えています。

クリティカルシンキング入門

ロジックツリーで見える説得力

根拠の使い分けは? 根拠を使い分けるという発想はこれまで無かったため、提案を行う際に必ず課題の形成、その原因、解決策という流れで考えてきた自分にとって大変新鮮な学びとなりました。 ロジックツリーの効果は? また、資料作成や他部署への提案において、前提知識のある相手なら多少省略しても伝わるものの、実際の業務ではそのような場面は少なく、ロジックツリーを用いることで相手に明確に伝わる文章を作成する必要性を強く感じました。 説得力向上はどう? さらに、報告や資料作成において結論だけではなく、根拠が明確でないために論理が飛躍し説得力に欠ける場合が多かったことから、ロジックツリーを活用して、説得力のある提案ができるよう努めていく所存です。

クリティカルシンキング入門

瞬発論理で挑む400字練習

論理的判断はどう? 自分の職位から、部下や上位の方々に対して論理的な判断や説明を伝える必要がある場面が多くあります。その際、瞬発的に頭の中で論理を組み立て、的確な言葉にする力を身に着けたいと考えています。しかし、急に言葉にするのは難しいため、まずはテキスト形式で週に1回、400字程度の文章を作る練習を始めたいと思います。 練習の効果は? この練習の目的は、複数のキーメッセージを網羅的に整理し、それぞれのメッセージを具体的な根拠や理由で支える方法を訓練することです。文章の構成や表現のバリエーションを工夫することで、状況や自分の考えをより明確に伝えられるようになり、日々の業務において論理的な説明力を高めることができると期待しています。

データ・アナリティクス入門

グラフで魅せる平均の真実

どの平均を採る? 平均という言葉一つをとっても、その状況にふさわしい計算方法を採用しなければ、意味をなさないと感じています。どの平均値を用いるべきか、またどの数値を算出すべきかを十分に理解し、それぞれに合った平均値を出すことが大切だと思います。さらに、グラフを活用することで、視覚的にわかりやすい情報提供ができると考えています。 ビッグデータの平均は? 実際のところ、現在の業務においては平均値を用いる場面はあまりありません。しかし、扱うデータ量が多いビッグデータの現場では、いずれ必要になると予想されます。その際には、どの平均を選択すべきかを慎重に検討し、わかりやすいグラフによってデータを効果的に提示していきたいと思います。

戦略思考入門

3C分析で見える行政の未来

3C分析の目的は? 研修で3C分析が取り上げられることが多く、その目的が各事業の成功の鍵を見出すことにあるという点に改めて気付かされました。 行政の調査方法は? 行政の立場では、競合分析が他の自治体の動向を調査することを意味しますが、どの視点で後追いをするのか、あるいは独自性を持たせるのかといった点は、今後の課題として捉えています。 住民サービスの課題は? また、行政には多くの課題が存在し、特に住民サービスに過剰な時間が費やされる現状は大きな問題です。このため、効果的な対策を立てるには現状の徹底した分析が必要であり、原因分析に加えて住民の動向や自治体の強みをしっかりと把握する必要があると感じました。

戦略思考入門

ROIの数字で実務を再考する

数字評価の意味は? ROIを数字で評価することで、状況が非常に理解しやすくなったと感じます。特に、技術戦略提案書などの背景構築にどのように反映できるか、実務で検討してみたいと思います。 投資対効果ってどう? 一方、ROI「投資対効果」だけで優先を決めるのは、必ずしも最適とは言えないという疑問も残りました。自身の業務については、これまで投資対効果を意識したことがなかったため、改めて工数実績から計算し、優先順位を見直す必要があると考えています。 捨てる選択はどう? また、ROIは捨てる選択を判断する際には有用だと感じた一方で、ROIのみで優先すべき項目を決めた場合に上手くいくかどうかには、やはり懸念が残りました。

データ・アナリティクス入門

多角的思考で拓く仮説の極意

全体視点は必要? 仮説は、全体を見渡す視点を持って立てる必要があります。複数の仮説を構築し、網羅性のある状態を維持することが重要だと感じました。 反省にどう向き合う? しかし、仮説が一度立てられた時点で、それで満足してしまうことがあると反省しています。今後は、複数の観点から仮説を組み立て、観点の漏れがないよう努めたいと思います。 検討のポイントは? 具体的には、課題解決のプロセスにおいて「ヒト・モノ・カネ」や「業務プロセス」といった基本の観点を軸に仮説を検討していくことが効果的だと考えています。また、一度仮説を立てた後には、他に見落とすべき観点がないかどうかを常に問い直す姿勢を持つように心がけたいです。
AIコーチング導線バナー

「必要 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right