デザイン思考入門

ワクワクが生む本当の学び

授業モチベ低下の理由は? 現在の業務では、学生の学業に対するモチベーションの低さが大きな課題となっています。授業アンケートなどの定量分析だけでは、学生の本音を把握するのは難しいため、フランクな環境で直接インタビューを行ったり、授業課題に取り組む姿を観察するなど、定性分析の手法を取り入れることが効果的ではないかと感じました。 内発性向上は可能? 実際に、学業に一生懸命取り組む数名の学生に「なぜそれほど頑張れるのか」と尋ねたところ、ほとんどの場合「単位を取りたいから」や「良い成績を取りたいから」といった外発的動機づけによる回答が返ってきました。これは、彼らが自らの内発的な動機、つまり学業に対するワクワク感の醸成ができていないことを示しており、強制ではなく自主的に学びを楽しむ環境作りが必要であると改めて実感しました。 課題の本質はなんだ? また、「解決すべき本質的な課題を明確にすること」ができれば、課題解決の半ばは達成したと言えるでしょう。しかし、インタビューや観察から本質的な課題を的確に抽出するのは容易ではなく、何度も試行錯誤を繰り返しながら進めていく必要があると感じています。

データ・アナリティクス入門

データ分析で見えた改善のヒント

目的と比較の重要性を認識 実務では無意識で実践していましたが、分析においては目的と比較が重要であることを再認識しました。「何を伝えたいのか」によってグラフの作成方法を考える、という視点は今後意識していきたいです。また、分析において要素に分解することは大切ですが、目的が明確でないと細かく分解すること自体が目的化してしまう可能性があるため、注意したいところです。 分析結果を施策にどう活かす? 弊社サービスの利用率や更新率を高める施策を考える上で、ユーザーデータの分析における学びを活用したいと思います。具体的には、「利用率を高める」ことと「更新率を高める」ことという目的に分けて、ユーザーの利用データや解約時アンケートなどの各種データから必要な項目を抽出し、分析します。 チームとの効果的な議論をどう行う? 毎週のチームメンバーとのミーティングでは、学んだことをメンバーにアウトプットし、チーム全体の視座を揃えるように努めます。特に、「利用率を高める」「更新率を高める」ためのデータ分析をメンバーと協力して行い、効果的な施策を導き出せるよう、有意義なディスカッションを重ねていきたいです。

クリティカルシンキング入門

偏りを超えた新しい気づき

なぜ偏った視点に気づく? 物事を考える際、人間はつねに偏った見方をしてしまうという現実を意識しています。その偏りこそが「ほかには何があるのだろうか」と自分に問いかけるきっかけとなり、課題に取り組む前にまず問いを立て、その答えを導き出すプロセスが大切だと学びました。また、相手に伝えるときは正しい日本語を使い、伝える手順を踏んで具体的な理由を添えることが必要だということも理解しています。 どう伝えると分かりやすい? 顧客との会議や提案の場面では、まず問いを明確にし、事前に参加者と共有することが重要と感じています。その結果、伝わりやすい資料作りや話し方を工夫することで、常に重要なポイントに焦点をあてたブレのない進め方が可能になると考えています。 何を合わせるべきか? さらに、自分の常識は会議参加者の常識と必ずしも一致しないことを認識し、まずは前提条件を合わせる姿勢が求められます。その上で、議題となる問いを全員で共有し、話が脱線しそうな場合には常に問いに立ち返って軌道修正を図ります。そして、情報を収集しデータを分解することで、相手に伝わりやすい形の資料を作成する努力を続けています。

データ・アナリティクス入門

仮説で切り拓く受講生の挑戦記

分析って何を探す? 分析とは、物事を比較しながら目的意識を明確にし、仮説を立てつつ進めるプロセスです。分析を効果的に進めるためには、「What(何を)」「Where(どこで)」「Why(なぜ)」「How(どのように)」という手順に沿うと良い成果が得られる可能性があります。 フレームをどう活かす? 特に「Why」の段階では、ケースに応じて既存のフレームワークを活用することで、より深い洞察が得られるでしょう。また、分析結果をグラフなどで見える化することにより、その説得力は一層増します。 障害の本質は何? 障害分析においては、過去の事例を参考にしながら、現時点では見えていない問題点を抽出することが重要です。これまでは既存の数字を並べるだけで手探りだった部分も、今後は「何を明らかにするか」という目的意識を持って進めたいと考えています。 データ活用はどう? まずは、障害発生件数の減少を目指すために、どのようなデータが必要かを検討し、過去の事例から現在の課題を洗い出すことから始めます。その上で、得られた情報をもとに自分なりの仮説を立て、分析作業を着実に進めていきたいと思います。

戦略思考入門

迷い捨て、戦略で未来創る

戦略ツールはどう活かす? 今週の振り返りを通じて、戦略的思考を支える具体的なツールとして、フレームワークやメカニズムの存在を再認識しました。単に知識として習得するだけでなく、どのシーンで活用できるかを判断する経験とトレーニングが必要であると実感しています。今後は、各テーマに取り組む際に、どのフレームワークやメカニズムが適用できるかを意識的に考える習慣を身につけたいと考えています。 捨てる勇気は持てる? また、「捨てる決断」が自分にまだ十分できていないことに気づけたのは大きな学びでした。重要性を理解していても実際の行動に移せていない自分に向き合うきっかけとなりました。これからは、仕事やプライベートにおいても、優先順位を明確にした上で「捨てる」決断を実践することを意識していきたいと思います。 専門性はどう磨く? さらに、専門性の向上を今後の取り組みの柱にしようと決意しました。戦略的な考えをフレームワークに基づいて展開するだけではなく、その実現可能性に対する自信を持つことが実際の行動に結びつくと感じています。自分の場合、その自信は専門知識やスキルの向上にあると実感しています。

データ・アナリティクス入門

ロジックで磨く問題解決力

どうすれば問題を整理? 問題解決においては、まず「What⇒Where⇒Why⇒How」の順で分析を進めることが重要だと実感しています。特に、何が問題なのかを正確に把握するためには、問題の要素を十分に分解することが必要です。これまでは、要素分解が不十分であったと感じたため、今後はロジックツリーを活用し、問題解決に必要なポイントを漏れなく洗い出していきたいです。また、図を用いてMECEの観点から整理することで、問題の俯瞰と検索がしやすくなると感じています。 運用方法は本当に適切? 現在、チーム体制の転換期にある中で、従来の運用方法では今後問題が生じる可能性があると予想しています。実際に、これまでの運用を続ける場合にどのような問題が発生するか、その理由を今回のプロセスで分析できると確信しています。今後は、運用メニューや業務内容を特定の要素に分解し、MECEを意識しながら、問題の特定に取り組んでいきたいと考えています。 定性分析で何が見える? さらに、仕事において定性的な問題を分析する際、定量的な視点や切り口を増やす方法を学び、より具体的な分析に結びつけていければと思います。

戦略思考入門

福祉現場で感じる経済の本質

規模の効果は理解できる? 規模の経済性について、私の職場は福祉系でサービスの販売を行っていないため、固定費は主に人件費や電気・水道料金に充てられ、変動費は支援に使用するわずかな材料費に相当します。生産量の増加による1個当たりのコスト低減は、通常の製造業とは異なる面があります。 習熟効果は実感できる? 習熟効果に関しては、各職員の累積経験やスキルの蓄積が大きな役割を果たしています。業務を重ね、得た知見を共有することで、効率が向上し、より質の高い支援が実現され、結果として利用者の拡大にも繋がっています。 範囲拡大は有効か? 範囲の経済性においては、当職場には多くの資格保有者がいるため、現行の支援業務に留まらず、個別領域の拡大や新たなプログラムの導入も検討の対象となっています。既存の資源をさまざまな形で活用することで、効率的な運営が期待できます。 ネットワーク整備は可能? 一方、ネットワークの経済性については、現状、業務を推進する上で必要なスキルを持つ人材が不足しているため、優先順位の見直しや既存スキルの活用、さらには採用活動の強化が求められています。

戦略思考入門

新たな視点!規模と習熟の発見

規模の経済ってどうなってる? 自社が製造業であるため、規模の経済性については理解していましたが、規模の不経済が発生する可能性については今回初めて知りました。また、営業においては「ある程度まで経験を積むと、それ以上の習熟効果が得られなくなる」という現象にも共通点を感じました。 標準化か習熟かどっち? 習熟効果を目指すのか、あるいはプロセスの標準化効果を狙うのか、状況に応じた柔軟な対応が必要だと実感しました。自部門における範囲の経済性については、これまで具体的なイメージが持てませんでしたが、動画で取り上げられた例のように、スキルやノウハウを有する人の異動や新規プロジェクトへの参加が、範囲の経済性に寄与することを理解できました。 不経済はどう捉える? 今回初めて知った規模の不経済を自社に当てはめ、実際に発生していないか、また万一発生する場合にはどのようなケースが考えられるかについても検討してみました。営業における習熟効果は経験によるところが大きいと感じるため、今後はメンバーにプラスの経験を積ませるよう努め、時には厳しい状況も経験させることで成長を促していきたいと考えています。

クリティカルシンキング入門

数字が描く学びの軌跡

どうして可視化する? グラフなどを用いた「可視化」を意識することで、一次データをより細かく分け、隠れた傾向を発見することが可能になります。数字を味方につけることが、データの真実を浮き彫りにする第一歩です。 データ切り口の意味は? また、データを意味のある切り口で分けることの重要性も指摘されています。複数の視点からデータを検討し、活用することで、分け方一つで導かれる結論が変わる可能性を理解する必要があります。 見た目だけで判断? さらに、データの分解に際しては、結論を急がず、ぱっと見の傾向が必ずしも全体を示しているわけではないということに注意が必要です。ロジカルシンキングの基本として、MECE(漏れなくダブりなく)を意識し、無駄のない切り口で丁寧に分析することが求められます。 分解のコツは何? 具体例として、商品ごとの顧客層を分析する際には、年齢、性別、職業、購入時の時間帯や曜日など、さまざまな観点から分解を試みることが有効です。ただし、複数の切り口を用いる際も、ひと目での判断によって誤った解釈をしてしまわないよう、十分に検証する姿勢が大切です。

クリティカルシンキング入門

全体把握で広がる発見の世界

MECEはなぜ有効なの? 「分かる」とは、単に知識として理解するだけでなく、物事を適切に分けて考えることに他なりません。まず、全体を定義し、その上でMECE(Mutually Exclusive, Collectively Exhaustive)の視点を取り入れて各要素を分解することが大切だと感じました。このプロセスを繰り返すことで、従来の通例にとらわれず、別の角度からの新たな発見も期待できます。 市場はどう捉える? また、市場調査やマーケティングにおいても、MECEの考え方は非常に重要です。ついつい感情や先入観から一部の要素だけを重視してしまいがちですが、全体像を正確に把握し、それぞれの要素が適切に分析されているか、見落としがないかどうかを常に意識する必要があります。 意見の裏には何が? さらに、他者からの提案を受け入れる際にも、全体を俯瞰して本質がどこにあるかを探り、本質をとらえるための切り口が適切かどうかを検証することが重要です。この際、その分け方が唯一の正解であるのか、または別の視点から新たな発見が得られる可能性がないかを慎重に考えることが求められます。

データ・アナリティクス入門

プロセス分解で見つける問題解決のヒント

原因を見極めるには? ビジネスにおいて、問題の「正しい」原因を特定することはほぼ不可能と言えます。様々な要因が複雑に絡み合っているため、正解を見つけるのは難しいものの、「こんな方向性で問題に取り組めばよいかもしれない」という目途は立つこともあります。問題の原因を明らかにする方法としては、プロセスに分解するアプローチが有効です。 クリック率不足の理由は? 特にWEB手続きを推進する業務では、プロセスで分けてクリック率やコンバージョン率を見ていく考え方がすぐに役立ちそうです。クリック率が低い箇所には、どのように誘導を行うかを検討する必要があります。また、手続き完了率が低い箇所については、説明の文言がわかりにくいのか、コールセンターに電話したいと思われる要因があるのかなど、問題の原因を深掘りする必要があります。 ABテストで改善は? これらのプロセスで分解して得られた情報を基に、クリック率やコンバージョン率が低い部分にはABテストを行い、より良い施策を立てます。さらに、その結果を活用して、データに基づく意思決定を行ったり、他者を説得する材料とすることが重要です。

クリティカルシンキング入門

問いが拓く本質解決への道

問いの立て方は? 今回の学習テーマは、私がこの講座で最も学びたかった内容そのものです。ビジネスにおいて課題を解決するためには、まず何をすべきかを明確にし、的確な施策を打つことが大切です。そのためにはまず「問い(イシュー)」を立て、その問いから目をそらさずに取り組むことが重要だと学びました。また、同僚や周囲の人とその問いを共有し、一緒に課題解決に向けて考える姿勢も必要です。 分析結果は何を示す? 私の業務では、アンケートデータやヒヤリハットデータの分析、そして事故防止策の策定を行うことが求められています。データ分析を終えた後に、「では何が課題か」「何をすべきか」を考えるフェーズに必ず差し掛かります。これまでの経験では、分析結果をもとに比較的実践しやすい案を出していましたが、本質的な解決には繋がらないプランに終始してしまっていました。 実現できる解決策は? 今回の学びを通して、まず本質的な課題解決のための問いを立てることの重要性を再認識しました。そして、その問いに対して実現可能な施策を考えるプロセスにシフトすることで、より根本的な問題解決が図れると確信しています。
AIコーチング導線バナー

「必要 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right