データ・アナリティクス入門

データ分析で業務効率化の新発見!

データ分析で新視点を得るには? データ分析とは、比較を行うことで新たな視点やアイデアを引き出すことが可能であると学びました。同じ基準や条件を用いることで効果的に分析ができ、新しい発見に繋がることが特に印象的です。 効率化への第一歩は? これまでの仕事では、何となくデータを用いながらプロジェクトの進捗を管理していましたが、新しい職場では積極的にデータの可視化を取り入れ、業務の効率化を図りたいと考えています。以前は過去のデータより直近のプロジェクトの状況にのみ焦点を当てていました。 なぜデータ可視化が重要? 日常業務の中で、業務上必要がない場面でもデータを可視化することは重要だと考えていましたが、既存のシステムやBIツールに頼りがちでした。しかし、自ら業務プロセスをデータ化することが、業務のパフォーマンス向上に繋がるのではないかと考えています。 ダッシュボード作成スキルをどう磨く? 現在は過去のプロジェクトマネジメントの経験を活かし、会社の既存のダッシュボードを一から作成するスキルを身につけるために勉強を続けています。

戦略思考入門

経営者視点で広がる新たな戦略

経営視点の重要性は? 大局的な視点で物事を見ること、そして経営者の視点で考えることが非常に重要であると学びました。どうしても自部署の視点に偏りがちですが、最終的な決裁は上長から経営者に至るため、彼らに納得してもらえる結論を導くことが必要です。そのため、短期的なゴールにとどまらず、それが会社全体にどのように貢献するのかを明確に文字にしたいと思います。 意見をどう取り入れる? また、他人の意見を積極的に取り入れることを意識しています。個人での業務が多いのですが、全社に影響を及ぼす可能性が高いため、計画段階から自分以外の視点を追加するよう努めたいと思います。特に競合分析については現場のメンバーがより詳しく見えている場合が多いため、一緒に計画を立てる方法で進めていきたいと考えています。 計画はどう整える? 実際の教育計画において、情報や意見を集める機会を設けたいと思います。さらに、社長や経営層からも意見を聞く場を作り、計画におけるずれがないか確認することで、計画の完成度を高め、実施の際には協力を得られるようにしたいと考えています。

データ・アナリティクス入門

仮説と検証で輝くデータ分析

グラフ選びの意義は? データの基本的な加工方法について学び、どの場面でどのグラフを用いるべきかを考える大切さを実感しました。グラフの選択を誤ると、重要なポイントに気づけなくなる可能性があるため、今後はグラフ選びのセンスをより一層磨いていきたいと思います。また、X軸やY軸の設定がグラフの印象に大きく影響することも学び、客観的な視点でデータを分析する必要性を痛感しました。 分析視点の拡大は? さらに、販売実績の分析においては、年齢、性別、購入時期などの切り口でデータを細分化し、多角的に見ることでより深い洞察が得られると感じました。データを見やすく加工することで、迅速な意思決定に繋がる効果や、説得力ある資料作成に役立つ点も納得できました。 仮説検証の基本は? 一方で、仮説を立て検証するという基本ステップが省略されがちであると感じました。手元のデータのみで課題の発見から解決策の選定まで進める傾向が見受けられるため、仮説設定と検証のプロセスにもっと注力し、多角的な分析を可能にする適切なデータ加工の重要性を再認識しました。

デザイン思考入門

失敗も糧に未来への挑戦

プロトタイプの意義は? 自身のプロトタイプ作成を通じて、また他者のプロトタイプを検討する際にも、可能性を排除しない姿勢がいかに重要かを実感しました。同様に、フィードバックの際も前向きなアドバイスを意識することで、その後の可能性が広がると感じています。 新手法は効果的? 新たなトレーニングプログラムの導入、新たな選手の育成方法、さらには試合運営の新しい手法を試みる場合にも、この姿勢は有効です。いきなり完成形を目指すのではなく、スモールスタートから出発し、繰り返し改良を重ねる流れが効果的だと考えます。ただし、生身の選手を対象とする以上、失敗や上手くいかない事態にも備える必要があり、あらかじめ関係者との合意形成をしっかりとおこなうことが重要です。 失敗も学びになる? どの業務においても、「とにかく試してみる」という姿勢と、不明点があれば実践を通して学ぶ姿勢が大切だと感じました。共感や課題の認識、アイディア出しといった基本的なプロセスを経た上でプロトタイプを進めれば、前向きな姿勢で改良を重ねることが成功につながると実感しています。

戦略思考入門

現状に挑む!業務改善のヒント

今のプロセスは最適? 現状への最適解を追求することの重要性を再認識しました。現在の業務は多くがプロセス化され、一定の手順に従って進められていますが、その一方でプロセス化によるオーバーヘッドが生じていることも改めて感じています。常に「今の対応が本当に最適なのか」という疑問を持ち、業務の見直しを図ることが大切だと考えています。 手順は見直す? これまでの問題への対応として、手順を確立し日常のオペレーションに組み込んでいます。しかし、定期的なプロセスの見直しやメンバーからのフィードバックを受け、各プロセスの必要性や効率を再評価するよう意識を変える必要があると感じています。 自問自答してる? まずは以下の点について自問自答してみたいと思います。 ・そもそもなぜそのプロセスが必要になったのか、当時の背景を十分に理解する ・現在の状況が当時とは異なる場合、対応すべき最適解が変わる可能性があるため、現状の必要性を検討する ・プロセスで実施している作業を、他のツールやソフトウェアなどの手段で代替できないかを検討する

データ・アナリティクス入門

4視点で読み解く問題解決のコツ

情報収集の課題は? 収集したデータは、そのままでは問題解決に活かすことが難しいと感じました。なぜなら、目の前にある情報に左右されやすく、都合の良い情報だけを集めて判断が偏ってしまうリスクがあるからです。 問題整理の手法は? また、【What】【Where】【Why】【How】というステップで問題解決を整理する考え方は、非常に効果的だと実感しました。これはデータ分析に限らず、さまざまな事象を体系的に整理する上で役立つ手法です。たとえば、製品企画や業務提案に取り組む際、どの切り口からアプローチするかの起点となるため、有用だと感じました。 提案の差はどう? 最近の新しい業務提案にあたっても、同様に【What】【Where】【Why】【How】で整理する必要があります。ただし、提案内容が【How】だけに偏ってしまう傾向があるため、MECEを意識して全体をバランスよく整理することが重要です。さらに、金額(HowMuch)や期間(HowLong)といった具体的な要素も含めて考えることで、より実践的な問題解決が可能になると感じました。

クリティカルシンキング入門

心に響くシンプル伝達法

提案資料はどう伝える? 業務推進に必要な提案資料の作成にあたっては、まず提案の目的、もたらすメリット、必要性、関係者への影響などをスライドに分かりやすくまとめることが大切です。資料作成時は、伝えたい内容や数値データに合わせたグラフを選び、例えば時系列データには棒グラフ、変化や推移を示す際には折れ線グラフを使用するなど、見せ方を工夫します。また、各軸には忘れずに単位を入れ、タイトルは内容が一目で分かるように工夫する必要があります。さらに、文字の表現やフォント選び、下線、太字、色などを活かしながら、情報が具体的に伝わるスライド作りを意識しています。 メールで本当に伝わる? 今回の講義を通じて、メールなどのコミュニケーションでも注意が必要だと実感しました。自分が発信するメールが必ずしも相手にしっかりと伝わっていない可能性があるため、タイトルやリード文、本文の構成をシンプルかつ要点が伝わるように工夫することが求められます。短い文章で必要な情報を明瞭に伝えることを意識し、読み手に負担をかけないコミュニケーションを心がけたいと考えています。

データ・アナリティクス入門

数字で読み解く現場改善の秘訣

データ分析はどう理解? データ分析の手法について学び、既存のメソッドを活用することでデータ内に潜む意味を解析できることを理解しました。ただし、MECEの設定基準やその手法についてはまだ不明な点があるため、今後は確認を重ね、分析力の向上に努めたいと考えています。 現状のITは十分? また、職場で業務改善を担当する中で、現在の環境では活用可能なITリソースが十分に利用されていないという認識に至りました。単に使い方や技術的な問題だけでなく、業務の種類、内容、工数、手順などが十分に把握されないままツールが導入されている可能性を感じたため、まずは自身の置かれている環境の理解を改めて確認する必要があると実感しました。 業務改善の手法は? 今後は、職場内の業務項目、分類、関連する法令、関わるステークホルダー、工数、作業手順をリストアップし、最適なツールの選定や作業方法の見直しにつなげていく予定です。具体的には、現在使用している掲示板の改善に向けて、上記の内容を全員に再認識してもらうための作業と、その手順書の作成を進める考えです。

クリティカルシンキング入門

データ分析で見つける課題のヒント

課題をどう発見する? 本講座で、課題(イシュー)を特定するプロセスについて学びました。これまで、最終的に解決すべき問題が何であるかを自分の先入観や仮説だけに頼って考えていたように思います。今後は、各種データを様々な角度から分析し、その結果をもとに課題を特定する作業に慣れる必要があると感じました。 販売計画をどう分析? 具体的には、ソリューション販売計画の策定に取り組む際、この手法を活用しようと考えています。たとえば、ある製品について「売る」「売りたい」といった単一のキーワードだけではなく、現状や市場、価格など複数のキーワードを抽出してデータ分析を行い、さまざまな切り口からイシューを探索する方法です。 意見交換は効果的? さらに、大きな課題に対しては、課題を細分化したキーワードに分解し、各キーワードに対応するデータを揃えることで、より具体的なアプローチが可能になると実感しました。加えて、同僚の意見を積極的に求め、ディスカッションを通じて個人的な偏りを排除することが、より客観的にイシューを特定するために重要だと感じています。

データ・アナリティクス入門

数字に秘めた学びの軌跡

データの真意は何? 実際のデータをただ眺めるだけでは、その背後にある示唆を十分に引き出すことは難しいです。データの意味を正しく理解するためには、適切な分析手法を用いる必要があります。 率の活用でどう変化? 単純な数字の比較だけでは良し悪しが明確にならない場合もあるため、「率」という指標を活用することで、より深い理解が得られることがあります。 体系的整理は有効? 問題の原因を探る際には、直感だけで原因を挙げるのではなく、体系的なフレームワークを使って整理することが効果的です。この方法により、抜け漏れなく各要素を洗い出し、論理的な仮説を立てやすくなります。 最適案の選び方は? また、複数の選択肢から最適な案を選ぶためには、コストや効果、運用負荷といった各比較軸に重みをつけ、数値化する手法が重要です。これにより、客観的な評価が可能になり、意思決定の質が向上します。 業務判断はどうなる? 日常業務においても、フレームワークや評価軸を意識して活用することで、論理的かつ効率的な判断を行うことができるようになります。

アカウンティング入門

シミュレーションで描く未来図

資金調達の基盤は? 資金調達とその使い道は密接に関係しています。固定資産に巨額の投資を必要とするビジネスの場合、自己資金だけでは賄いきれないため、長期借り入れや株式などを利用して資金面のバランスをとる必要があります。一方、短期的な利益が見込めるスモールビジネスでは、自己資金を重視するだけでなく、借り入れの返済負担や利子を細かく算出しなければ、事業がうまくいっても倒産のリスクが伴う可能性があります。 借入状況はどうな? 現在の事業では追加の借り入れを行ったばかりであり、以下の3点を順次検討しています。 ① 前期、今期、次期の財務諸表(B/S)のシミュレーションを実施する。 ② ①によるシミュレーションが完了すれば、次の店舗展開のシナリオが見えてくる。 ③ 最悪の状況を想定したB/Sを作成し、それでも事業運営が可能かどうか検証する。 為替金利の影響は? さらに、為替や金利の影響がどの程度経常利益に反映されるのか、具体的な実例がなくイメージが湧かないため、その点については今後グループ内で意見を交換したいと考えています。

データ・アナリティクス入門

WHYを追う!仮説×データの挑戦

仮説検証で何が分かる? ライブ授業では、WHAT⇒WHERE⇒WHERE⇒HOWの順番に沿って、適切な仮説を基にデータ検証を行う重要性を再認識しました。以前学んだクリティカルシンキングにおける問題解決のステップと共通点が多く、両者の関係性がよく理解できました。仮説検証のプロセスにデータ分析を組み合わせることで、より良い課題解決や提案が可能になると感じています。 内部監査にどう活かす? この考え方を、私自身の内部監査業務にも取り入れ、問題の核心に迫る質の高い改善提案を実現したいと思います。特に、これまであまり重視してこなかったWHYの分析については、今後、的確に問題の真因を把握するために、重点的に実施していく予定です。 MECEで本質をつかむ? また、課題に対して決めつけず、全体をMECEの視点で捉えながら不要な部分と深堀が必要な部分を明確に区別したいと考えています。深堀が必要な箇所については、改めてWHAT⇒WHERE⇒WHERE⇒HOWのステップを踏み、考えを可視化して説明できるよう努めることが大事だと実感しました。

「必要 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right