マーケティング入門

ターゲットのニーズに応える提案術

問題をどう明確にする? 問題や痛みを明確にすることは重要です。そのためには、ターゲットを絞り込み、デプスインタビューを通して観察を行うことで具体的な問題を発見することが可能です。また、簡潔で親しみやすいネーミングも大切です。 提案の準備はどう進める? 得意先へ商品を提案する際には、ただ売りたい商品を押し付けるのではなく、まず得意先の大切な顧客がどのようなニーズや痛みを抱えているかをよく考え、それを解決できる商品を提案する必要があります。これにより、効果的な販売促進が可能となります。 提案成功のための手順は? 具体的な手順としては、まず商品を提案する前に、得意先がどのような商品を望んでいるかをヒアリングします。そして、提案の前に得意先のニーズと痛みを整理します。さらに、提案する商品がもたらす効果を整理し、得意先にも伝えやすい簡潔なキャッチコピーを用意することが重要です。

デザイン思考入門

アイデアは無限大!多角思考のすすめ

用途を再考している? 自社でコーヒーマシンの入れ替えを検討する際、まず用途を見直し、本当にコーヒーマシンである必要があるのかを改めて考えるべきだと感じました。そのため、SCAMPAR法を用いて他の選択肢が存在しないかを検討し、最適な方向性を見出したいと考えています。 多角的な発想は? 今回の経験を通じて、最初に思いついた解決策だけでなく、現実的なアイデアから柔軟な発想まで、さまざまな視点で問題に取り組むことの大切さを学びました。先入観にとらわれず、多角的なアプローチを試みることで、新たな選択肢が生まれる可能性を実感しました。 協力で解決策は? また、今回は一人で考えを進めましたが、チームや複数の人数で意見を出し合うことで、より良いアイデアが生まれると確信しています。今後、実際の課題に直面した際には、チームメンバーと協力して効果的な解決策を探っていきたいと思います。

クリティカルシンキング入門

異なる視点でデータを深掘りしよう

どんな癖に気づいた? 仕事以外で演習を行うことで、自分の考え方の癖を再認識することができました。また、データ分析においても、様々な可能性から物事を捉えなければ誤った方向に進んでしまう可能性があるため、慎重に進める必要があることを理解しました。今後も常にこの切り口で良いかを確認しながら進めていきたいと思います。 アンケートはどう見える? 研修の受講アンケートの分析を行う際には、そのデータをそのまま受け止めるのではなく、異なる切り口で見たり、他のデータと組み合わせたりすることで、新たな観点からアンケート結果や傾向を捉えることができると思います。 どの切り口で検討? データ分析を行う際、まずは考えられる切り口を出し、それらを組み合わせて分析を進めていこうと思います。また、データ分析後も別の切り口がないか、さらに深堀りが必要ではないかを立ち止まって考えていきます。

データ・アナリティクス入門

現場の知見!多角的視点で切り拓く未来

分析の始まりは何? データ分析は、基本的に各要素の比較から始まります。分析を行う前に目的をはっきりさせ、まず仮説を立てた上で必要なデータを収集することが重要です。一つの考えに固執するのではなく、複数の視点から検証し、さまざまな可能性を考慮することが求められます。 フレームワークは役立つ? これまで学んだフレームワークを実務に応用し、再度データ分析に取り組むことで、現状の問題点や改善策が明確になります。たとえば、株式データや取引先データを活用し、視覚化することで、より説得力のある分析と問題解決が可能となります。 必要なデータは何? また、何が問題であり何を解決すべきかという目的を常に見失わないようにすることが大切です。さらに、どのような意思決定を行うために、どんなデータが必要かを明確に考え、取得できるデータをなるべく多く把握する姿勢が求められます。

データ・アナリティクス入門

フレームワークで未来を拓く

3C・4Pの活用法は? 3C・4Pなどのフレームワークを活用して仮説を立てる重要性を改めて実感しました。なんとなく思いついた仮説では、他に考えられる可能性を見逃してしまう恐れがあります。一方で、フレームワークを用いることで、仮説の検証に必要な分析も効率よく進められるようになりました。 株式事務の仮説立案は? また、株式関連の事務においては、過去の経験や従来の分析結果に捉われず、さまざまな視点から仮説を立て、検証していくことが大切だと感じています。そのため、3C・4Pを活用し、複数の仮説を意識しながら業務に取り組むよう努めています。 実務検証の流れは? さらに、実際の業務では4P・3Cのフレームワークを使って分析を行い、課題に対して複数の仮説を出すことを徹底しています。そして、仮説の検証に必要なデータの抽出や分析も合わせて行うことを意識して作業を進めています。

データ・アナリティクス入門

ステップで変わる!問題解決力の磨き方

ステップを踏んで考える重要性 分析する際には、大きな点だけに焦点を当てず、ステップを踏んで考えることが重要です。ロジックツリーを活用することで、大きな問題を細分化して俯瞰できます。この手法により、自分だけでなく他の人も問題点を理解しやすくなり、様々な角度から物事を捉えられるようになるでしょう。 「なぜ」にとらわれない方法とは? 「なぜ」に注目しがちですが、大きな問題を細分化して捉えることで、複数の解決策を見つけることが可能です。ビッグデータの中から、どの数字を分析対象にするかを目的から逆算して決定することが必要です。 ビッグデータ分析の始め方 まずは、ビッグデータを理解しましょう。そこから目的を定め、分析すべき数字を選びます。ロジックツリーを利用して異なる方向からのアプローチも試みると、違う視点から全体を見渡し、新たな発見が得られるかもしれません。

デザイン思考入門

疑問から生まれるデザインの力

多様な視点が見えた? 同じテーマについて多様な視点が存在することを学びました。ユーザー目線で現状の仕組みが本当に適切かどうか検証する過程で、各メンバーが異なる観点から意見を述べるのが非常に印象的でした。また、デザイン思考に関しても、参加者それぞれの想いが交わり、ディスカッションが盛り上がった点がとても興味深かったです。 現状をどう問い直す? 現状に疑問を持つことの重要性を実感しました。従来の方法や制度がただ続いている理由だけで運用されている場合、それをユーザー目線で見直し、より使いやすい形に改善する必要があります。まずは現行制度の確認と再検討を行い、実際に受けた問い合わせや相談内容を反映させながら問題定義を進めることが大切です。さらに、可能な範囲で改善策を検討し、ロジックツリーなどの手法を用いて試行錯誤を重ねるプロセスが印象に残りました。

データ・アナリティクス入門

妥協を捨てた学びの軌跡

現状の問題確認は? 問題を特定する際は、What、Where、Why、Howの観点から確認する重要性を改めて感じ、ABテストの存在も初めて認識しました。また、分析を進める中で「このくらいでいいや」という気持ちを捨て、徹底的に考え抜くことの大切さを実感しました。 企画実行はどう? 自ら企画を立案する際も、同じ観点で問題を明確にし、仮説を立て、データに基づいた検証を徹底することが必要だと考えます。そうすることで、企画の実行可能性が高まり、周囲からの賛同も得られると感じています。 学びをどう活かす? これまで学んだ内容を丁寧に振り返り、積極的な実践を心がけたいと思います。業務が繁忙になると学んだことをおろそかにしがちですが、本講義で得た知識を振り返り、日々の業務にどのように適用できるかを考える時間を常に確保していきたいです。

クリティカルシンキング入門

疑問をチャンスに変えた日々

課題洗い出しはどうする? 業務課題に取り組む際は、まず課題となるイシューを漏れなく洗い出すことが基本です。各イシューは疑問形で具体的に問いかけることで、本当に解決すべき問題が明確になります。また、一面的な経験則に頼らず、多角的な視点から解決策を検討することが求められます。特に、最初に手を付けるべき課題を明確に優先順位を付けることで、効率的な対応が可能となります。 伝え方と相談対応はどう? 顧客からの相談や業務上の課題に対しては、これまで学んだ正しい日本語の使い方や伝え方、そして図や表を活用したイメージしやすいドキュメント作成の技法を積極的に活用しています。各課題を順番に処理するのではなく、優先度を意識しながら対応すること、さらに対策を立てる際には自身の経験に引きずられず、必要に応じて他者の意見も積極的に取り入れている点が大きな特徴です。

戦略思考入門

本質を捉える学びで効率的な目標達成へ

本質を見極めるには? 物事の本質をしっかり見極め、目標を効果的に達成するためには、大局的な視点で情報をバランスよく収集し、分析して考えることが重要だと学びました。特に目の前にいる顧客の言葉をそのまま受け取るのではなく、なぜそのニーズが生まれたのか、その背景や取り巻く環境の変化を考慮することが大切です。そして、全ての整合を取るのは難しいため、自分なりの判断軸や基準が必要です。 最短で目標を達成する方法は? 現在担当しているプロジェクトや組織マネージメントにおいて、最も効果的に目的を達成するために、論理的に考え、可能な限り最速・最短距離での到達を意識したいと思います。本質的なゴールを設定し、優先順位を決めたうえで逆算しながらプロセスを描くことで無駄を省きます。進行中は、様々な試行錯誤をし、臨機応変に軌道修正をしながら進めていきます。

クリティカルシンキング入門

新しいデータ分析手法で業務効率化に成功!

データ加工の基本技術とは? データの加工の仕方、分け方の工夫、分解の注意点の3つを学びました。特に注意が必要だと感じたのは、分け方の工夫と分解の注意点です。手を動かしてそれらしいデータが見えた際にすぐに結論を出してしまうと、誤った判断に繋がる可能性があると感じました。 商談データ分析の新アプローチ? 私の業務では、特に商談や受注に関するデータの分析を担当しています。これまでとは異なる切り口でデータを集計し、同時に新しい仮説をもとにデータを分解してみることは、すぐに実践できそうです。 仮説を活用したデータの再確認 商談や受注データの吸い出しを行う際には、常に新しい仮説を持って取り組むことが重要です。そして、一見それらしいデータが見えても、一段階深く集計の漏れや新しい切り口、データの正確性を再確認することが必要です。

マーケティング入門

マーケティング戦略再構築の道筋

顧客要望の収集が鍵? 商品販売を行う会社の強みを考える際、顧客の要望を収集し分析することから始めることが重要です。会社と顧客の両者が抱える問題点を深く考察し、その結果、新たなビジネスの可能性を見出すことができます。 方針は再構築すべき? 私たちの新規事業は開始から1年が経過しましたが、まだ明確な製品販売方針が決まっていません。また、顧客ターゲットも曖昧なままです。この状況ではマーケティング戦略を確立できませんので、方針を再構築する必要があると強く感じています。 新旧事業の優先順位は? 今後の方向性として、新規事業販売の促進か、既存企業サポートの強化のどちらを優先するかを計画し、意見を交換しながら明確な道筋を立てていきたいと考えています。両者の必要性を認識しつつ、優先順位をつけて取組むべきです。

「必要 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right