データ・アナリティクス入門

単純平均だけじゃない!学びの深層

代表値選びのポイントは? あまりにも多くの消費者データを見る際、単純平均だけで全体を判断してしまう傾向にあると改めて感じました。そのため、代表値の計算方法を再検討する必要があると実感しています。代表値として単純平均、加重平均、幾何平均、中央値の4つの方法があること、またそれぞれのばらつきを標準偏差で評価するプロセスが欠かせない点を改めて認識しました。 標準偏差の意義は? また、標準偏差の公式は覚える必要がないといわれていますが、その理由についてより深く理解したいと考えています。√の記号に初めて触れたのは高校生の頃のことだったので、改めてその意味や背景について興味を持つようになりました。

データ・アナリティクス入門

比較で磨かれる成長のヒント

分析の目的は何? 分析する目的を明確にすることが大切だと感じました。また、分析は単独で行うのではなく、比較を行う意識を持つことで、勝手な判断による自己評価を避けることができると思います。何を基準に良し悪しを判断するか、きちんと意識する必要があると再認識しました。 実績の評価はどう? 営業という仕事では、実績と活動量が重視されます。実績の評価は、単に個人目標の達成度だけでなく、他者との比較によりその良し悪しが明らかになる点を考慮する必要があります。このような考え方を取り入れることで、従来とは異なった質の高い振り返りが可能になり、今後の成長につながると感じました。

戦略思考入門

捨てる勇気で見える新たな学び

どんな視点で判断? 戦略的に「捨てる」という意識を持つことが重要です。その判断を行う際には、すぐに手に入る目の前のデータだけでなく、見えていない部分も様々な視点から評価し、目的に照らして判断する必要があると感じました。既存のやり方や慣れを疑うことも、大切なポイントです。 人的作業の見直しは? また、人的作業の見直しやシステムの導入を考えるとき、この「捨てる」という選択は非常に有効だと感じました。作業が本当に必要なのか、なぜ必要なのかをしっかりと考え、必要な要素を洗い出すことで、これまでのルールを一度手放して新たに構成し直す決断を実践していきたいと思います。

マーケティング入門

ターゲット再定義のススメ

誰にアプローチしてる? 現業において「誰に、何をするのか」という問いが常に語られる中、特に「誰に」が重要であることを改めて実感しました。ターゲティングの評価基準として学んだ6Rの観点から、現状設定しているターゲット層が本当に適切かどうかを振り返り、状況に合わせて常にアップデートする必要性を感じました。 競合の動向はどう? また、市場では競合各社がそれぞれ異なるプロモーションを展開しており、その動きに敏感になることが求められます。競合の動向をしっかり捉えつつ、自社の強みをどのように活かすかという視点を持ち続けることが、勝利への鍵であると学びました。

データ・アナリティクス入門

平均だけじゃない!データの真実

平均と偏差の活用は? データ集団の分析においては、どの平均値を採用するかが重要です。数字の性質を把握するために、平均だけでなく標準偏差を確認し、データのばらつきを評価することが大切だと感じました。なお、エクセルには標準偏差の計算関数が用意されているため、計算の手間はかからず助かっています。 仮説と切り口は? 業務で数字データを扱う場合、まず目的と仮説を明確にし、その上でどこから切り口を作るかを整理して分析することが必要です。単に数字を断片的に眺めるのではなく、全体の流れや構造を意識してデータを読み解くよう努めています。
AIコーチング導線バナー

「必要 × 評価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right