データ・アナリティクス入門

スピード重視の仮説検証で未来へ

数値と定性の評価はどれ? デザイン変更の方法案を、コスト、スピード、意思疎通などの各観点から数値で比較する手法は、とても効果的だと感じました。しかし、実際には数値化が難しい場面も多いため、例えば「大中小」や「◎〇△×」といった定性的な評価方法も有効だと思います。実際、イベントのプランニング月間である6月には、MECEに基づいて項目を洗い出し、これらの評価方法を用いて各案を総合的に比較したいと考えています。 A/Bテストの理解は進んでる? A/Bテストについては、これまで学んできた知識を活かし、解説通りの考え方で演習に取り組むことができました。その後の動画で、ポイントを絞って比較するという視点が紹介され、非常に納得のいく気づきを得ました。以前から社内ではA/Bテストの必要性は認識していたものの、コストを抑えながら迅速に実施する方法が見出せずにいました。今後、部内でのリサーチや議論を重ね、具体的な手法が確立できた際には、今回の学びを活かしていきたいと思います。 行動と分析のバランスは? 最も印象に残ったのは、原因の特定に時間をかけすぎず、実際に行動を起こし、仮説検証のサイクルを早期に回すという考え方でした。これまで、分析にもっと力を入れるべきだと考えていた自分が、ビジネスのスピードとのバランスを重視する必要性に気付かされました。もちろん、分析と実証の双方に適切な時間とエネルギーを割くことが重要だと感じています。具体的には、先輩社員の意見を聞いたり、必要に応じて外部の知見も取り入れながら、約半分の比率で分析を進める方法を模索し、明日から日々意識して取り組んでいきたいと考えています。

クリティカルシンキング入門

データ分析の新たな視点を拓く学び

数字の見せ方はどう? グラフや比率などの数字の表示方法を変えることで、印象が異なり、最初の情報だけでは気づかない傾向や特徴を発見できることを学びました。グラフ化する際も、分類の仕方によって見えてくるものが変わります。まずはRaw Dataを確認して全体を把握し、その上で何を伝えたいのか整理して数字を整理する必要があると実感しました。 切り口は何で違う? また、数字の切り口によっては本質を見誤ることがあります。そのため、常に複数の切り口を持ち、一つの見方だけではなく、様々な切り口で数字を分析することが重要です。これまで経験に頼っていた切り口も、When、Who、Howを意識することで幅広く持てるようになると気づきました。 データの視点はどう? 私の仕事では日常的にデータに触れ、それを解釈しています。同じ現象の分析にも異なる視点を持つことを心がけています。具体的には、宿泊予約数の動向をデイリーのデータで見ていましたが、週次や月次で見るとどのような違いがあるのかを早速試してみたいと思います。また、他の切り口での分析も手間はかかりますが、視野を広げるために取り組んでいきたいです。 行動する意義は? 自分の思考の癖から抜け出すには、まず行動することが大切です。ひと手間、ふた手間加えて、複数の視点で分析することを心がけます。その際、これまでの分析結果や結論を再評価し、本当に正しいのか疑う姿勢を持ち続けたいです。また、MECE(漏れがなく、ダブリがない)の意識を持ち、ロジックツリーを活用していくことで、このフレームワークに対する苦手意識を克服していきたいと思います。

戦略思考入門

捨てる勇気と集合知で挑む成果追求の旅

集合知の活用を意識するには? 戦略思考は個々の経験や背景に基づいているため、集合知を活用することが重要です。私は、自身のこだわりが不足していると感じる一方で、仲間の力を引き出し、集合知を生み出すことを意識したいと思っています。 捨てることの重要性とは? 捨てることが苦手ですが、顧客の利便性を高めるためには捨てることが不可欠です。新メンバーや外部人材の力を借りるために意見を聞いているものの、プラスアルファの会話が増え、まだ成果には結びついていません。また、外部の力を有効に活用するためにメンバーの育成が必要で、これには時間がかかるためジレンマを感じています。 フレームワークの意図的な活用法は? フレームワークの使い方について再確認しました。フレームワークは単に埋めることが目的ではなく、意図を持って物事を見るためのものです。戦略思考とは、ゴールを描き、最短最速で目的に到達する方法を考えることです。資源を有効に使い、最短最速を追求する必要があると再認識しました。 資源を最大限に活用するには? チームの資源を効果的に利用するためには、差別化や捨てることにこだわることが必要です。しかし、これらの領域が一部のメンバーに偏る傾向があり、改善が必要です。基本をおろそかにせず、マーケティングプランの作成においても、フレームワークを単に埋めるだけでなく、その正しい使い方をメンバー間で確認し合うことが重要です。 9月から12月にかけて、この点に重点を置きながら取り組みます。フレームワークの正しい使い方を確認し、メンバーのスキルアップに努め、チーム全体で成果を上げることを目指します。

データ・アナリティクス入門

小さな仮説、大きな成長

なぜ仮説が必要? 仮説は非常に重要です。急いだり怠ったりして、仮説を立てずにいきなり方法論に入ると、結果として時間が余計にかかるか、誤った方向へ進んでしまう可能性があります。 どう検証すべき? また、仮説はあくまで仮の答えであり、その検証が必要です。検証のためには目的意識を持ったデータ分析が不可欠です。そのため、たとえ「答え」となりうるものであっても、複数の仮説を立てることが求められます。さらに、3Cや4Pなど異なる切り口を用いることで、問題全体を網羅的に捉えることが可能となります。 疑いは成長の鍵? 加えて、仮説の立証を目的としたデータ収集や分析においては、自身の仮説が誤っているのではないかという視点を忘れずに実践することが重要です。こうすることで、自分に都合の良いデータだけを集めてしまうことを避けられます。 原因はどう見極め? 実店舗の売上やPLに関する業務では、好調な店舗と不調な店舗が存在します。いずれの場合も、その原因を正確に特定し、好調なら通例に従い、不調なら改善策を講じることが必要です。これまで、まず膨大な時間をかけてデータを収集していたところを、仮説思考を取り入れることで、何が問題なのかを先に明確にし、仮説を立てることから対応するようになりました。 何を意識すべき? また、目につきやすい場所に仮説思考に関するポイントやステップを掲示し、常に意識できる環境を整えることも有効です。正解や不正解を問わず、失敗を恐れずに実践していくこと、日常的に課題意識や疑問を持つこと、そして先輩たちの実践事例や経験から学ぶことが、さらなる成長につながります。

データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

リーダーシップ・キャリアビジョン入門

受講生が描く学びの軌跡

モチベーションってどうして? 今回学んだ内容は大きく2点あります。まず、モチベーションについてです。モチベーションは個々に異なるものですが、マズローの5段階欲求や動機付け・衛生理論などを通して、自身の現状を把握する方法を学びました。特に、なぜ働くのかという動機付けの本質を理解することが、効果的なインセンティブの活用に繋がると感じました。また、モチベーションが低い場合には、その理由を明確にし、どのように向上させられるかを検証する必要があると実感しました。一方で、モチベーションが高い場合においては、現状で十分なのか、あるいはさらに高い目標があるのかを確認していくことが大切だと思いました。 振り返りはどう機能する? 次にフィードバックについてです。振り返りの大切さを再確認するとともに、振り返りの環境整備や質問力の向上が不可欠であることを学びました。数字だけの確認に留まらず、本人がどのように考え、どこで迷い、何がうまくいったのかといった具体的な点を掘り下げる質問が重要だと気づきました。これにより、課題の発見や他部門への展開が可能になると考えています。 1on1ミーティングでどうする? また、14日に予定されている1on1ミーティングに向けて、今回学んだ内容を復習し、先月の振り返りのための具体的な質問事項を事前に作成する予定です。数字的な成果について、できたこととできなかったこと、そしてその理由を整理し、モチベーションのフレームワークを実際に活用してみたいと思います。さらに、効果的なコミュニケーションを実現するために、聞き出す環境や信頼関係の構築も意識して取り組んでいきます。

マーケティング入門

新サービス普及の鍵は適合性と試用可能性

イノベーションの普及要件とは? 比較優位、適合性、わかりやすさ、試用可能性、可視性がイノベーションの普及要件であるという話は、非常に印象的でした。特に、試用可能性と適合性については、新しいサービスや商品に顧客を移行させたい今の時代において、必要不可欠な観点だと感じました。例えば、スマートフォンの普及は、元々ガラケーで電話を持ち歩く文化や、PCのWEB活用の素地があったからこそ、スムーズに進んだと考えます。 セグメンテーションの重要性 また、現代は価値観が多様化しているため、セグメンテーションを細かくし、自社にとってどこがメリットなのか冷静に判断することが重要だと理解しました。具体的には、ハーゲンダッツが「大人のアイス」というターゲットを設定し、「ご褒美に買うアイス=プレミアムアイス」という新たなジャンルを開拓した例が挙げられます。 誰に何を伝えるべきか? お金を借りることに抵抗がある人が大半であるため、セグメントをしっかり行い、どの層に何を伝えるか(例えば、低金利で無担保融資が可能であること)を明確にすることが重要です。さらに、実際にどのようなシーンでお金を借りることができるのか(教育、旅行、結婚など)を具体的に伝えることが求められます。 自社サービスの再検討方法 このように、イノベーションの普及要件に基づいて商品を見直すことや、競合を意識することの重要性を改めて認識しました。これを機に、自社のサービスの長所や、プロモーションで顧客に与えたいイメージ、行動変数を含めたマーケット選定、プロモーションの方法を再検討していきたいと考えています。

クリティカルシンキング入門

問いに挑む毎日の成長

今の問いは何だろう? イシューとは、今ここで答えを出すべき問いのことです。イシュー設定の際には、「問いの形にする」「具体的に考える」「一貫して抑え続ける」という3つのポイントを意識する必要があります。まずは、問いが何であるかをはっきりさせることが大切です。 全体で課題を共有する? 次に、その問いを常に意識し続けることで、解決すべき課題が見失われないようにします。そして、組織全体でこの問いを共有することで、皆が同じ方向性に向かって課題解決に取り組むことが可能となります。適切なイシュー設定は課題解決の成功に直結するといえるでしょう。 手法で問題を割り出す? また、これまで学んできたロジックツリーやプロセス分解の手法を活用することで、イシューを導き出す方法もあります。例えば、売上構成をロジックツリーで細かく分析し、問題を特定の要素(例えば、客数の少なさ)に収束させるといったやり方が考えられます。 ユーザー心理は理解済? さらに、自社サービスのウェブサイトに訪れたユーザーがどのような課題を感じ、最終的にどのような体験をしているのかについて、ユーザビリティテストを行わずとも自らイシューを見極めることが可能です。ユーザー行動に注目し、どの画面で何がわかりにくいのか、どのような心理を引き起こしているのかを把握することが重要です。 仮説検証の流れは? 具体的な取り組みの手順としては、まずチームで最も解決すべき問題(イシュー)を特定し、そのイシューに基づいてデータを精査します。その後、仮説検証を繰り返すことで、実際の課題や障壁を明確にしていく流れが効果的です。

戦略思考入門

ビジネス効率を左右するシナジーの真実

経済性の理解は十分? 規模の経済や不経済、範囲の経済、ネットワーク効果といった概念を正しく理解することは、事業経済性のメカニズムやビジネス法則を誤らないために必要です。特に、指数関数的に変化する現代では、テクノロジーがキーワードとなり、迅速な対応が競争の基盤となっています。 シナジーは本当に有効? 学んだことの一つに、「シナジーは本当にあるのか」という点があります。既存の資源を活用して効率的にビジネス展開を行うことが一般的ですが、その方法が本当に効果的なのか、既存資源が競争優位性として本当に機能しているのかを慎重に分析する必要があります。シナジーが逆に非効率的になることもあるからです。 部署異動は効果ある? 自社業務に当てはめて考えると、社内異動が範囲の経済に関連するのかという疑問が生じます。現在所属している技術部から、将来的にマーケティングや営業など他の部署への異動を考慮していますが、過去の知見や経験を新しい部署に活かすことでシナジー効果が本当に生まれるかという点について考えたいです。これをどのように分析し、判断すべきなのかを検討しています。 兼任制は効率化? また、組織内で兼任制を採用しており、ISO監査やプロジェクト管理、営業活動を行っていますが、規模の経済性から見るとこの方針が適切かどうかも重要な検討事項です。このようなことも鵜呑みにせず、メリットとデメリットをしっかり整理し、分析する習慣を持つことが大切です。指数関数的に変化する時代において、判断に迷う場合はまず行動を起こし、やりながら調整しつつスピードを出すことも求められていると感じます。

クリティカルシンキング入門

考えを広げるクリティカルシンキングの力

自分の考えは正しい? 人は「考えたいこと」に囚われがちであり、その考えは容易に偏ったり誘導されたりします。そのため、客観的な視点、すなわち「もう1人の自分」を意識し、本当にその考えで良いのかを疑うことが重要です。 どう鍛えるべき? クリティカルシンキングを身につけるためには、日常的に繰り返し練習することが必要です。「本当にそれでいいのか」「他に視点はないか」といった疑問を常に思考に組み込む習慣をつけることで向上します。具体的には、クライアントへのメールや1on1の場面、家族との何気ない会話の中でもトレーニングを行うことが可能です。 他人の意見を聞く? 自分の論理を優先しがちですが、他人の意見から学ぶことが多い場合もあります。業務においては、例えば自社の損益にばかり気を取られ、クライアントの立場や利益を考慮しないことがあります。偏見に囚われず、フラットな姿勢で他者の話を聞く意識が必要です。 他の提案はどう? クライアントへのサービス提案時には、「これ以外の方法はないか」や「逆に〇〇のサービスはどうだろう」といった問いを自分に投げかけ、さまざまな視点から提案内容を考えることが鍵となります。提案する際にはシンプルさを心がけ、「なぜならば」という論理的な展開で一貫性を持たせます。そして、フィードバックを受ける際には偏りなく意見を聞く姿勢が求められます。 多角的な視点で? チームの目標設定においても、課題を分析し、「他の視点は?」と多角的な視点を考える必要があります。また、他のチームからの評価を通じて客観的にチームの強みや弱みを見極めることも重要です。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

クリティカルシンキング入門

データの力で業務効率が劇的アップ

数字をどのように活用するか? 数字をただ並べるだけでなく、合計や並べ替え、比率などの作業を行うことで、数字の持つ意味をより深く捉えられるようになります。また、グラフ化することで視覚的に数字を捉えやすくなり、その意味を浮き彫りにすることができます。特に「目に仕事をさせる」という表現は、非常に印象的でした。 グラフ化の新たな視点とは? グラフ化する際には、10代や20代といった規則性ある分け方だけでなく、数字の意味を強調するために規則性がなくても範囲を設定することが有効であると理解できました。さらに、分類分けを細かく行うことも重要です。複数の分類に分けることで、見えなかったものが見えるようになり、誤った解釈を避けることができます。そのためには、自身が行った分け方が正しいのか、他に適切な方法がないのかを常に問い続けることが必要です。 業務に役立つMECEとは? また、MECE(漏れなくダブりなく)の手法について、具体的な分け方やプロセスの切り分けを改めて学ぶことができました。この手法はバックオフィスの業務において、本部集約化に向けた検討時に非常に役立ちます。各業務のプロセスを順を追って確認することで、どの工程をどの部門や担当者が担うべきかを明確にし、適切な本部移管を進められます。 日常業務での学びの生かし方 自分の業務においても、数字の合計や比率を出すだけで終わっている作業が多いことに気づかされました。これからは、「目に仕事をさせる」グラフ化というステップを取り入れ、その重要性を再確認しました。今後の業務において、この学びを生かしていきたいと思います。

「必要 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right