クリティカルシンキング入門

データ分析の新たな視点を拓く学び

数字の見せ方はどう? グラフや比率などの数字の表示方法を変えることで、印象が異なり、最初の情報だけでは気づかない傾向や特徴を発見できることを学びました。グラフ化する際も、分類の仕方によって見えてくるものが変わります。まずはRaw Dataを確認して全体を把握し、その上で何を伝えたいのか整理して数字を整理する必要があると実感しました。 切り口は何で違う? また、数字の切り口によっては本質を見誤ることがあります。そのため、常に複数の切り口を持ち、一つの見方だけではなく、様々な切り口で数字を分析することが重要です。これまで経験に頼っていた切り口も、When、Who、Howを意識することで幅広く持てるようになると気づきました。 データの視点はどう? 私の仕事では日常的にデータに触れ、それを解釈しています。同じ現象の分析にも異なる視点を持つことを心がけています。具体的には、宿泊予約数の動向をデイリーのデータで見ていましたが、週次や月次で見るとどのような違いがあるのかを早速試してみたいと思います。また、他の切り口での分析も手間はかかりますが、視野を広げるために取り組んでいきたいです。 行動する意義は? 自分の思考の癖から抜け出すには、まず行動することが大切です。ひと手間、ふた手間加えて、複数の視点で分析することを心がけます。その際、これまでの分析結果や結論を再評価し、本当に正しいのか疑う姿勢を持ち続けたいです。また、MECE(漏れがなく、ダブリがない)の意識を持ち、ロジックツリーを活用していくことで、このフレームワークに対する苦手意識を克服していきたいと思います。

リーダーシップ・キャリアビジョン入門

受講生が描く学びの軌跡

モチベーションってどうして? 今回学んだ内容は大きく2点あります。まず、モチベーションについてです。モチベーションは個々に異なるものですが、マズローの5段階欲求や動機付け・衛生理論などを通して、自身の現状を把握する方法を学びました。特に、なぜ働くのかという動機付けの本質を理解することが、効果的なインセンティブの活用に繋がると感じました。また、モチベーションが低い場合には、その理由を明確にし、どのように向上させられるかを検証する必要があると実感しました。一方で、モチベーションが高い場合においては、現状で十分なのか、あるいはさらに高い目標があるのかを確認していくことが大切だと思いました。 振り返りはどう機能する? 次にフィードバックについてです。振り返りの大切さを再確認するとともに、振り返りの環境整備や質問力の向上が不可欠であることを学びました。数字だけの確認に留まらず、本人がどのように考え、どこで迷い、何がうまくいったのかといった具体的な点を掘り下げる質問が重要だと気づきました。これにより、課題の発見や他部門への展開が可能になると考えています。 1on1ミーティングでどうする? また、14日に予定されている1on1ミーティングに向けて、今回学んだ内容を復習し、先月の振り返りのための具体的な質問事項を事前に作成する予定です。数字的な成果について、できたこととできなかったこと、そしてその理由を整理し、モチベーションのフレームワークを実際に活用してみたいと思います。さらに、効果的なコミュニケーションを実現するために、聞き出す環境や信頼関係の構築も意識して取り組んでいきます。

クリティカルシンキング入門

切り口が変える数字の物語

数字の意味は何か? 数字が持つ意味をより深く理解するためには、まず情報を分解して、その解像度を上げることが重要です。一つの視点だけでなく、複数の切り口から現象を分析することで、より正確な現状把握に繋がります。 結論前の検証は? 具体的には、一つの傾向に満足するのではなく、さらに他の可能性を探る意識を持つことや、得られた分析結果からすぐに結論を出すのではなく「本当にそうなのか」を丁寧に検証する姿勢が求められます。また、頭で考えるだけでなく実際に手を動かし、様々な視点からデータを見直すプロセスも大切です。 MECE活用で分析は? さらに、分析を行う際にはMECEの考え方を取り入れることが有効です。具体的には、階層、変数、プロセスという視点から、物事を漏れなく、重複なく整理していく手法が挙げられます。たとえば、プログラムの参加者数の伸びを検討する場合、年齢だけでなく居住エリアや参加プログラムの種別といった観点から属性を分析することで、より多角的な理解が可能になります。 課題整理はどう進む? また、自身の業務上の課題を明確化するためにも、評価の視点が抜けや重複なく組み込まれるよう、MECEを活用して細分化し、その対応力を数値化する手法は効果的です。担当している事業プログラムの認知度についても、過去数年間のデータを大学別、学部別、学年別、応募種別などの切り口で集計し、グラフ化することで、現状と改善点を明確にできます。もし、最初の分析で十分な結論が得られなかった場合には、別の切り口から再度分析を行い、想定される課題について漏れや重複がないよう整理することが大切です。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

クリティカルシンキング入門

データの力で業務効率が劇的アップ

数字をどのように活用するか? 数字をただ並べるだけでなく、合計や並べ替え、比率などの作業を行うことで、数字の持つ意味をより深く捉えられるようになります。また、グラフ化することで視覚的に数字を捉えやすくなり、その意味を浮き彫りにすることができます。特に「目に仕事をさせる」という表現は、非常に印象的でした。 グラフ化の新たな視点とは? グラフ化する際には、10代や20代といった規則性ある分け方だけでなく、数字の意味を強調するために規則性がなくても範囲を設定することが有効であると理解できました。さらに、分類分けを細かく行うことも重要です。複数の分類に分けることで、見えなかったものが見えるようになり、誤った解釈を避けることができます。そのためには、自身が行った分け方が正しいのか、他に適切な方法がないのかを常に問い続けることが必要です。 業務に役立つMECEとは? また、MECE(漏れなくダブりなく)の手法について、具体的な分け方やプロセスの切り分けを改めて学ぶことができました。この手法はバックオフィスの業務において、本部集約化に向けた検討時に非常に役立ちます。各業務のプロセスを順を追って確認することで、どの工程をどの部門や担当者が担うべきかを明確にし、適切な本部移管を進められます。 日常業務での学びの生かし方 自分の業務においても、数字の合計や比率を出すだけで終わっている作業が多いことに気づかされました。これからは、「目に仕事をさせる」グラフ化というステップを取り入れ、その重要性を再確認しました。今後の業務において、この学びを生かしていきたいと思います。

クリティカルシンキング入門

分解で見える本質への道

データ分解の意味は? データを多角的に捉えるための分解フレームワークを学びました。このフレームワークでは、①分け方を工夫する、②切り口を変えて考える、③複数の切り口を用いる、④導いた仮説が正しいか自問する、といった思考スキルを活用します。こうした手法により、データを正しく理解し、課題解決へとつなげることが可能になります。また、切り口を検討する際は、目的に沿ってMECEの原則を意識することが重要です。 顧客インサイトはどう? 現在、タスクチームで顧客インサイトに基づくConfidence活動を担当しています。顧客インサイトは、顧客ニーズの特定や戦略策定において重要な情報資源ですが、膨大なデータと多岐にわたる内容により、情報の整理や可視化に課題を感じています。さらに、目の前の数字や表にとらわれがちで、「そのデータから何を導き出すか」という視点が薄れることで、本質的な課題に辿り着けない可能性もあります。 分解スキルの使い方は? そこで、今回Week2で学んだ「分解」のスキルを活用し、データ分析に対する心理的ハードルを下げたいと考えています。まずは来月の顧客インサイト分析資料作成に向け、手を動かしてデータを分解することから始めます。その上で、目的に沿った複数の切り口を検討しながら、自分自身で問いを立て、データを深掘りしていきます。表やグラフなども試行し、情報をいかに伝えやすくするか工夫していきます。最終的には、使用した分析手法と見えてきた課題、そこから導かれる解決策を、チームメンバーに分かりやすく説明できるよう整理するつもりです。

アカウンティング入門

数字の裏側に隠された学び

売上と営業利益はどう? 売上高は企業の事業規模を示す指標であり、数字が大きいほど事業の規模が広いと理解できます。また、営業利益までの項目は本業における収益と費用を反映しており、本業でどれだけの利益を上げているかを把握できることがわかります。 経常利益はどう捉える? 経常利益は、主に財務活動に起因する本業外の収益や費用を含み、継続的な利益獲得の見込みを判断するための重要な指標となります。それ以降の項目では、税金等調整前当期純利益、当期純利益、親会社株主に帰属する当期純利益といった形で、最終的な利益状況が表現されています。 P/Lの見方は? P/Lを読み解く際には、まず売上高、営業利益、経常利益、当期純利益といった大きな数字に注目し、事業全体の概況を把握することが基本です。さらに、各項目の推移や数値の比較・対比を行うことで、傾向の変化や大きな相違点を見出すことが重要です。 競合との違いは? 現在のプロジェクトでは、競合他社と自社との比較・対比分析にP/Lを活用したいと考えています。特に、競合の過去数年にわたるPLの傾向を分析し、どの項目に費用をかけて利益を生み出しているかを抽出することで、自社との違いを明確にしたいと考えています。 効率はどう高める? また、5月末に予定している社内プロジェクトの中間報告会に向け、Q2の情報を盛り込んだ報告内容を準備中です。このため、分析は自分一人で進めるのではなく、ChatGPTやCopilotといったツールを活用し、業務効率を高めながら取り組む方法を模索しています。

データ・アナリティクス入門

小さな気づきが未来を拓く

原因はどこにある? データ分析の各ステップを学んでいく中で、問題の原因を具体的に特定する段階に達しました。その過程では、確かに難しさも感じました。普段、何気なく行っている問題の究明はあいまいな部分があり、必ずしも分析に基づいて進められているわけではありません。たとえば、ある文書に対する口コミに関心を持っても、その口コミの年代や時期、男女比、キャンペーン実施の有無など、詳細な点には踏み込まない場合が多いと感じます。 どう試せばいい? また、動画でも示されていたように、このステップや手法に慣れるためには、身近な事例で実際に試してみることが不可欠です。うまくいかないときには、どの点をどのように改善すればよいかを考え、再度取り組むというプロセスを繰り返す必要があると実感しました。 適用例はどう考える? この手法は幅広い場面で活用できると思いますが、具体的な適用例をすぐにイメージするのは難しい面もあります。日常的には数字を扱っていますが、それらの数字から直接施策や解決策を導き出す機会が少ないため、意識があまり向かないのかもしれません。また、非常に困難な状況や緊急性の高い場面が少ないことも影響していると考えます。 改善の実現方法は? 現職は大きな問題がないため安定しているものの、逆に「こうなればもっと良くなるかもしれない」という改善点に積極的に取り組めていない部分も多くあります。問題と捉えるというよりは、今後の課題として「どのようにすればさらに良い状態になるか」を洗い出し、身近に改善すべき対象を見つけていきたいと考えています。

クリティカルシンキング入門

分解から見出す成長のヒント

分解の切り口は? 先週までの学びで、分解することの重要性については理解が深まりましたが、どのような切り口で分解すれば良いのか疑問にも感じていました。今週の学習で、分解の際に使える代表的な切り口について理解できたことは大きな収穫です。 どの手法を試す? まず、層別分解では、全体を定義した上で「~である/~でない」や年齢、性別、地域などの基準で部分集合に分類します。次に、変数分解では、売上を「単価×販売数量」、利益率を「利益÷売上」といったように、ある事象を構成する変数で分解して考えます。そして、ある事象に至るプロセスごとに分け、その中でいずれの段階に問題があるのかを明確にする方法もあります。 ユーザー離脱の理由は? 現在、会社の採用サイトではユーザーの離脱が多く、目的のエントリーに至らないという課題があります。そこで、ユーザーがどの段階で離脱しているのかを把握し、改善策を検討するために、プロセスの分解を用いてユーザー行動を細分化し、どのフェーズにボトルネックが発生しているか、また何が離脱の原因となっているのかを明らかにしようと考えています。 どの改善策が効果的? 具体的には、ゴールデンウィーク明けに課題に取り組む予定です。まずはプロセスを分解し、各段階で確認できる数字を抽出します。数字に極端な変動がある部分を特定し、そこから仮説を立て、問題の洗い出しを行います。私は、頭を整理するために紙やノートに図を書きながら進める方が分かりやすいため、その方法で取り組むつもりです。

リーダーシップ・キャリアビジョン入門

他者の成長を支える私の価値観発見

何を大切に感じた? 過去の仕事を振り返ることで、自分が何を大事にし、価値を感じているのかを言葉にすることができました。私は、自分が関わることで他者が能力を発揮し、周囲から認められるような成果や成長が見られることに価値を感じていると気づきました。ただ能力を活用するだけでなく、社会的評価を得ることも重要視しているというのは、自分では気づいていなかった点で、良い発見となりました。 部下の成果はどう? 部下が成果を出し、成長することで会社や周囲から認められるようにサポートすることが、私にとって価値のあることです。店舗としての成果が求められていますが、その中でも部下が成果を出せるようにしたいと考えています。来店客の担当をある程度私が決められるため、部下が成果を出しやすい仕事の割り振りを行い、仕事を進める中でより良い成果を出すための方法を一緒に考えていきたいと思っています。 進捗はどう確認? 定期的な進捗確認の打ち合わせを設ける予定で、頻度は2週間に1回を考えています。部下本人は数字目標を掲げていますが、それ以外の目標がイメージしにくいようなので、まずは数字目標にどれだけ近づいているか、また、そのための行動ができているかを確認していきたいです。想定している部下は、他人の行動を真似るのは得意ですが、自分で考えたり新しい発想をするのは苦手だと見ています。そのため、打ち合わせの中でその苦手部分を強化するか、もしくはロールモデルを広く探し、糧にできるように働きかけていきたいと考えています。

クリティカルシンキング入門

分析で見える新たな気づき

全体像をどう掴む? まず、全体像を明確にし、その上でMECEの観点から各要素を分けてみることが大切だと感じました。分析の際には、When、Who、Whatといった切り口を用いることで、気づかなかった本質や特徴が見えてくることが実感できます。たとえ分割したときに特徴があまり現れなくても、それ自体が一つの成功といえ、他の切り口での再分析に向けた前進となります。 数字から何が分かる? 次に、プロダクト営業が主な業務となる中で、8期の販売実績を業界別、企業別、新規と既存、リードタイム、職種、引き合い額、受注額、受注率、失注額、失注率、商談からのリードタイム、プロダクト別という多角的な尺度で分析する意義を実感しています。こういった多角的なアプローチにより、見落としがちな側面や新たな効果的手法を発見することができるでしょう。 リソースはどう使う? また、限られた人数でプロダクト販売に取り組む現状を踏まえ、業務分析によってどの部分にリソースを重点的に投下すべきか、あるいは外注した方が効果的かを数字に基づいて判断することが重要です。具体的には、販売実績の分析だけではなく、営業活動自体の業務分析を行い、目標達成のための仮説を立てる取り組みが求められます。 議論のポイントは? 最後に、これらの分析や仮説は常にアップデートし、得られたインサイトをチーム内で議論する機会を積極的に創出することを意識しています。こうした取り組みが、今後の行動計画や業務効率の向上につながると信じています。

クリティカルシンキング入門

「データ分析の真髄を学ぶ:見逃さないコツ」

グラフを使う重要性とは? 数字データを扱う際には、以下の点に着目すべきと感じました。 まず最初に、グラフを使う選択肢を常に考えることが重要です。さらに、見えている数字だけで判断してはならないという点も大切です。また、一般的なデータの切り方が必ずしも正しいとは限らないことにも注意が必要です。 データ分解で深掘りする方法 データの分解では、当初出た傾向とは異なる結果が見える場合があるので、さらに深く分解することが求められます。その際、MECEを意識し、特にモレがないようにすることが重要だと思います。また、層別、変数、プロセスを使い分けることも必要です。 運用設計で注意すべき点 運用設計を行う際には、利害関係者がMECEでモレがないかを確認することが必要です。新規事業のフロー構築において、全体をプロセスで分解し、必要なツールを作成していますが、再度プロセスを確認し、より正確なものに仕上げていくことも大事です。 サマリーデータはどう見せる? クライアント提出用のサマリーデータに関しては、見せ方を工夫し、ニーズに応えた数字を提出することが求められます。そして、時間的なロスが生まれるかもしれませんが、一度作成したものを一日寝かせてから再度検証することを意図的に実施するべきです。 急ぎの案件での分析 急ぎの案件では、得たい数字が出た時点で分析を完結してしまうケースがあるため、これ以上分解できないかにこだわって現状把握を進めることが重要だと考えます。

「数字 × 出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right