クリティカルシンキング入門

データ分解の新たな視点で未来を開く

数字分解の効果は? 数字を分解することで、データの解像度が向上します。分解の方法によって、見やすくなる効果があります。また、分け方の工夫によって差が現れたり隠れたりするため、多様な分け方が必要です。より多くのデータと分け方が組み合わさることで、分析の精度と確度に信頼性が増します。仮に思ったような結果が得られなくても、その分析が不要だったと分かるだけでも価値があります。そして、新たな分析を試みる契機となります。 グラフ作成の落とし穴は? データを分析する際、時には望む結果が出るようにグラフを作成してしまうことがあります。しかし、今回の学びから、精度と確度を上げるためにはデータのさらなる分解が必要であると感じました。今後は、MECE分解の3原則を意識してデータ分析を進めていきたいと思います。 再検証は必要? まず、過去の不具合事例を再度分析し直してみようと思います。一度結論を出した事象を再検証することで、今回の学びがどれほど有効であったかを確かめ、同様の結論に至るかどうかを確認するのは興味深い取り組みです。データ分析は非常に重要で、誤った原因を見つけてしまうと、対策や改善がすべて無駄になる可能性があります。そのため、より多くの分解を心がけたいと思います。

データ・アナリティクス入門

分析と比較で成果を最大化するヒント

分析には何が必要か? 今週は、「分析には比較や目的設定が重要であり、条件を揃える必要がある」という内容を学びました。確かにそうだと思う内容が多く、これらのポイントは今後も常に忘れないようにしたいです。 新たな知識の発見 一方で、LIVE授業を通じて新しい知識も得ることができました。定量分析に定性分析が加わることや、平均にするべき数字と平均にしないほうが良い数字など、目的によって異なるという点が特に興味深かったです。 クライアント提案時の比較 クライアントへの提案時には、広告効果を伝える必要があります。他社や過去の結果と比較し、より効果があることを示したいです。また、自身の営業計画を立案する際にも、過去の実績や先輩の成果と比較し、達成の共通点を探りたいと思います。 上長との振り返りで何を確認する? まずは上長と今回の学びを振り返り、クライアントへの提案で話せるように比較ポイントを洗い出したいと思います。上長と取りこぼしがないか確認し、その後で必要な情報を集めます。さらに、四半期ごとの計画立案時には、自分の達成した成果と比較し、成功のポイントを明確にしたいです。また、達成傾向にある先輩と比較することで、さらなる成功の糸口を見つけたいと思います。

アカウンティング入門

アカウンティング苦手でも大丈夫!学び直しの一歩

明確な目的を持つ理由とは? 森先生による1回目のライブ授業では、本講座を受講する際に明確な目的を持つことの重要性が強調されました。漠然と授業を受けるだけでは知識は身につかず、受講完了後の自分の姿をしっかりとイメージすることから始めるべきだとされました。私も他の受講生同様に、アカウンティングは言葉が難解で、数字に強くないと理解が難しいという固定概念を持っていました。しかし、この講座では構造と意味合いを理解することが目的であり、財務諸表に記載された内容を理解できることが求められるので、少し肩の荷が下りました。 経営報告会を活用するには? 社長が年に数回開催する経営状況の報告会では、アカウンティング情報を用いた説明が行われます。これまではその情報を深く理解することができずにいましたが、今後はそのような報告を理解し、さらに自ら分析して今後の経営計画を立てられるようになることが理想です。 学びを深めるための具体策 これを達成するために、まず過去の社長説明資料を確認し、直近の経営状況についても確認することから始めます。また、グループワークまでに森先生が紹介した書籍を購入して読み進め、その内容をグループワークで説明できるように準備します。

クリティカルシンキング入門

営業成績向上のカギはデータ分析!

--- 分析の重要性をどう捉える? 分かるということは、分けることです。ひとつの観点だけでなく、全体をざっくり分けてから更に分解していくことの大切さを学びました。例えば、単に率や平均の傾向が見えたとしても、他の視点から考慮する必要があります。これまで、分析の必要性や意味に疑問を抱き、実行をためらうことがありましたが、たとえ数字が出なくても、失敗したとしても、それ自体に価値があるという考え方を知ることができました。 リソース配分の最適化は可能? 営業所全体の新規顧客と既存顧客の比率と目標達成率を比較し、自身の数値と照らし合わせることで、異なる点を検討し、業績向上に繋げていきます。また、受注、失注、継続の際にどんな癖やパターンがあるかを分析し、既存と新規にどの程度リソースを割り当てる必要があるかを判断します。 振り返りを活かすには? 毎週の振り返り時には、他者と自身の数値を比較し、次週の行動指針を設定します。定量的に分析する習慣を身につけることで、説得力のあるトークができるようになることを目指しています。さらに、自身の営業活動において、どの局面で受注できているか、失注しているかを再確認し、改善点を見つけていきます。 ---

データ・アナリティクス入門

MECEで切り拓く!新たな論理学習

理想と現状の違いは? 問題解決では、まず理想の状態と現状のギャップを定量的に把握することが重要だと再認識しました。現状を正常な状態に戻す対策と、ありたい未来の実現に向けた解決策の2つの視点が必要であることを確認しました。 ロジックとMECEはどう? 今回の学習でロジックツリーとMECEの考え方について改めて学ぶ機会を得ました。これまで自己流になっていたロジックツリーを正しく再理解できたのは大変有意義でした。また、MECEの手法により、漏れや重複を防ぐことの大切さを実感しました。普段の業務では口頭だけで場合分けを行い、チーム内に認識のズレが生じることもあるため、今後はロジックツリーを活用し視覚的に共有するよう努めたいと思います。 分析の壁はどう? 一方、日常の業務においては、数字を追いかけ原因を探る分析作業が少ないため、新たに異動してくるメンバーが「分析」という言葉に戸惑うケースも見受けられます。演習問題の形式では対処できても、実際の業務課題にこの手法を効果的に結びつけるのは難しいかもしれません。そのため、全体像を把握しながら論理的思考を実践し、可能な限り定量化して原因を追究する問題解決のプロセスを指導していく必要性を感じました。

データ・アナリティクス入門

実績分析で気づく新たな視点

グラフを使い分けるには? データの多さや少なさを確認したいときは縦棒グラフ、比較を行いたいときは横棒グラフ、割合を示したい場合は円グラフを使うのが効果的です。用途に応じてこれらのグラフを使い分けることが重要です。目的を明確にした上で分析を行い、最終的に作成する資料が社内外のステークホルダーに感謝されるようなものになると理想的です。 どのグラフが最適ですか? たとえば、担当先ごとの売上や営業所間のメンバーの実績達成率を比較する際には横棒グラフが適しており、担当先のマーケットシェアを示したいときには円グラフが便利です。会議での効果的なアウトプットを意識して、適切なグラフを作成していくことが求められます。また、縦軸と横軸に何を選ぶかによってアウトプットの見方が変わることがあるので、様々な試行を行いたいと思います。 実績分析に時間を割くべき? 毎朝、実績を見る際に、自分だけでなく営業所メンバーの実績もExcelで分析しています。従来のやり方に加えて、グラフ作成にも挑戦しています。縦軸と横軸を従来とは異なる項目にしてみるなど、工夫を凝らしています。この作業にはかなりの時間を要するため、毎日1時間は数字分析の時間を確保しています。

データ・アナリティクス入門

ロジックツリーとMECEで整理する学びの極意

問題の実数把握の重要性を再認識 問題や現状を実数で把握することの重要性を再認識しました。現状の問題を理解した後、アイディアを整理する手法としてロジックツリーとMECEを学びました。以前からロジックツリーの存在は知っていましたが、2つの種類があることは新たな発見でした。また、MECEについては、社内での係数の分類方法を見ると、元々MECEを意識して分析目的で分類が形成されていると感じ、既存の分類の意義を再確認できました。 数字化の意識をどう高める? 現状や問題を日常的に数字にしていますが、今後はさらに意識的に行おうと思います。MECEについては、大項目で終わらせることがあるので、階層を意識する必要があると考えています。この分野において、AIも進化してきているので、検討するべき項目の洗い出しにおいて、効率的かつ網羅的であることを意識したいと思います。 ロジックツリーとAIの活用 問題の数字化や目標達成までの数字化、対策に対する数値的感覚の共有が重要です。ロジックツリーの階層を意識し、さらなる分類方法の可能性を追求し(「このポイントを分類する方法はあるか?」という問いを持つ)、AIを活用して網羅性の向上を効率化させたいと思います。

データ・アナリティクス入門

データ分析の新たな視点を発見!

データ分析に必要なスタート地点は? データ分析とは何かと問われたとき、私は即答できない自分に気づきました。しかし、week1で「分析とは比較である」という言葉に出会い、新たにスタート地点を明確にすることができました。これからは、自分が行おうとしている分析が「比較」になっているかどうか、自問自答できるようになりました。さらに、分析を行う目的をしっかりと確認し、自分が伝えたいことに合致した比較ができているかを常に問い続けることを忘れないようにしたいです。 結果的な「比較」に満足していませんか? よくある例として、言われたままにデータを出すことが多かったのですが、特に期末には前期比や前年比を提示するだけで終わっていました。しかし、何を「比較」すればより実態や現状を明確に伝えることができるのかを考えるアイデアが必要だと感じています。 新しい発見へとつながる比較は? たくさんのデータがある中で、売り上げの数字以外にも何か意味のある比較対象を見つけたいと思います。売り上げや数量、売り上げの多い顧客などは一般的な比較対象ですが、それ以外にどのような視点で比較すれば新しい発見につながるのか、色々な分析データを見ながら探していくつもりです。

アカウンティング入門

営業利益vs売上総利益の深い学び

売上総利益と営業利益の違いは? 売上総利益と営業利益の違いについて理解が深まりました。これまで、自分の仕事でサービスごとの損益計算を行っていた際、それを営業利益と呼んでいました。しかし、実際には販管費などを差し引く前の数字であるため、それは売上総利益であることが分かりました。この経験を通じて、一般的に使われている言葉でも、会社によっては内訳が異なることもあり得るため、各数字にどの項目が含まれているかをしっかり確認する必要があると感じました。 自分の事業全体をどう比較する? 今後は、自分の事業全体における売上高、売上原価、そして販管費がどの程度かかっているのかを、昨年度と比較してみたいと思っています。これを実施することで、それぞれの用語に対する理解が深まり、自社の事業全体が儲かっているのか、どのような状態にあるのかを把握する助けになると思います。 サービスごとのPL比較で何を学ぶ? また、扱っている各サービスのPLを並べて比較し、サービスごとの違いも見ていきたいと思います。具体的には、売上原価が多くかかるサービスと、売上原価が低く抑えつつ売上高を高く維持できるサービスなど、それぞれの特性を理解しようと考えています。

クリティカルシンキング入門

課題を「分解」してデータを見落とさない秘訣

解像度向上の手法とは? データの解像度を上げる手法をいくつか学びました。「全体像をとらえる」ことで近視眼的な視点から脱却し、「分解」を積極的に取り入れることで、課題や問題をより具体的に抽出することが可能です。漏れや抜けをなくすことが、一見遠回りのように見えても、結果的には最も効率的な方法であると感じています。 異なる視点での分析の重要性 売上分析や時間帯分析などを行う際には、ただ数字を並べるのではなく、違う角度からの見え方を取り入れることで、見落としや抜けを防ぐことができると考えています。プレゼンの機会があった際も、通り一遍の見方ではない切り口を提案することで、新たな課題を抽出することができるのではないかと感じています。 数値報告での注意点は? 月例のミーティング用に数値報告の素材を提供する際は、以下の点に注意しています: - 並べた数字を別の視点で並べ替える。 - 補完できる部分がないか同僚に相談し、思考や見方の偏りに気付く。 - すでにグラフ化されているものについては、異なる切り口で見せ方を検討し、恣意性がないか確認する。 これらの工夫により、より具体的で効果的なデータ分析が可能になると実感しています。

アカウンティング入門

経年分析で見つける自社の課題

資産と負債をどう分析する? 資産と負債のそれぞれを、流動・固定という観点から見て、また純資産とのバランスが取れているかを確認したいと思います。経年でこのバランスに変化がないかを確認することで、全体の状況を把握し、その後に個々の数字を分析していきたいです。また、業界ごとのバランスの違いも確認し、それが提供価値と一致しているかを見極めることも重要です。 経年分析で何を見通せる? 自社のバランスシートを経年で分析し、現在の状況をしっかりと把握したいと思います。特に、資金の使途を理解することで、自社の経営方針における課題を見つけ出したいです。たとえば、固定資産の比率を減らすには投資計画を見直すことなど、具体的な数字に基づいて考えたいです。また、競合他社との比較を通じて浮かび上がる課題も考慮し、分析の切り口を広げたいと思います。 競合比較で見える課題とは? さらに、自社と競合他社のバランスシートを経年で比較し、傾向に違いがないかを確認したいです。我々の業界では、固定資産の割合が大きいことが特徴であるため、中期の投資計画の必要性やその経営方針との一致について論理的に説明できるよう、理解を深めたいと考えています。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

「数字 × 確認」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right