データ・アナリティクス入門

仮説思考で問題解決力を高めよう

仮説の種類は何? 仮説は大きく2種類に分けられます。まず、結論の仮説はある論点に対する暫定的な答えや予想を示し、一方で問題解決の仮説は具体的な問題を解決するための思考の枠組みとして機能します。このように、まず事実から何が問題かを特定し、次にどこに問題があるかを仮説として立てます。その後、なぜその問題が発生しているのかを仮説に基づいて考察し、最終的にはどうすべきかを明確化します。 仮説思考のメリットは? 仮説思考のメリットは多岐にわたります。内省的な視点を持つことでアウトプットの説得力が増し、課題への意識が高まることで解像度も向上します。また、無闇にデータを探すよりも効率的・迅速に問題を解決する道筋を得られ、アクションの精度も同時に高まるのです。 真因分析って何? アプローチの一例には真因分析やゼロベース思考があります。真因分析は「なぜ」を5回繰り返して根本原因を探る手法で、目的が売上目標の達成であるときには売上の構造を商談数、クローズレート、平均商談単価の掛け算として考えることで、課題を特定します。例えば、クローズレートが低ければ、それは競合に負けているか、あるいは顧客のニーズを十分に捉えていないことが原因として考えられます。それぞれに対策を講じることで、適切な営業活動を促進できます。 真因分析はどう使う? また、真因分析は顧客への業務改善提案にも利用可能です。申請業務に多くの工数がかかる場合、表面的な解決策として人員増加や自動化が考えられがちですが、真因分析をすると記入ミスの修正プロセスの煩雑さや申請者への正しい記入方法の伝達不足といった根本的な原因が明らかになります。 情報整理のポイントは? 現在分かっていることを文章化し状況を整理することが重要です。その後、仮の仮説を立て、それを検証するために不足している情報を洗い出します。追加情報を収集する際は、チェリーピッキングを避け、公平な視点で仮説の有用性を判断していきます。

データ・アナリティクス入門

問題解決をステップで学ぶ魅力

問題解決の要点は? ビジネスにおける問題解決には、ステップで考えることが重要です。 何が課題なの? まず、直面している課題や状況を明確にすることから始めます。これを「何が問題か?」という問題定義の段階として考えます。そして、「あるべき姿」と「現状」のギャップを定量的に捉えます。この段階で、問題の具体的な側面を客観的に整理することが肝心です。 どこで障害発生? 次に、問題の発生箇所を特定します。これは要素分解を行い、問題が発生している場所を見極めるプロセスです。「どこに問題があるか?」を明確にし、優先してアプローチすべき箇所を洗い出します。その際、さまざまな切り口を用いて視野を広げます。仮説を複数立て、それらをデータで検証することが推奨されます。 なぜそうなったの? 問題の原因を分析するためには、「なぜ問題が起きているのか?」を探ります。このステップでは、ロジックツリーを用いることが効果的です。ロジックツリーは問題を漏れなくダブりなく(MECE)分類する方法で、全体像を把握し、思考の幅を広げる手助けとなります。 どう解決すべき? 次に解決策を考えます。「どうするか?」を定義し、原因に対する有効な解決策を提案します。ここでも、ロジックツリーを使うことで、さまざまな解決策を広く考えることができます。 どの手法が役立つ? また、MECEに基づく分解手法も問題解決の際に有効です。階層文界や変数分解を用いることで、全体を細分化し、問題を明確に捉えることが可能です。MECEに考えることで、ビジネスチャンスを逃すことが少なくなります。たとえば、販売施策では商材ごとや月ごと、エリアごとの比較を行い、実績と目標を比較することが求められます。 どう進めるか? このように、問題解決のプロセスでは段階的に考え、具体的な解決策に導くことが重要です。目標達成のためには、データを基に根拠を持った施策を考え、実行することが求められます。

データ・アナリティクス入門

検証の軌跡が未来を変える

原因って何が影響する? 問題の原因を追究するためには、対象となる現象が起こるまでのプロセスを細かく分解し、各段階の要素を把握する手法が有効であることを学びました。また、複数の可能性を網羅的に洗い出し、根拠に基づいて最適な解決策を絞り込む方法も身に付けることができました。 検証はどのように進む? 仮説検証の手法としてのA/Bテストにおいては、検証対象の効果を正確に判断するために、できる限り条件を揃えた同一環境下で比較することの重要性を再認識しました。これにより、得られる結果がより信頼性のあるものになると実感しました。 なぜ離脱が発生する? さらに、ユーザーの利用過程をプロセスに分解し、どの段階で離脱が発生しているのかを探るファネル分析についても、具体的な事例を通じて理解を深めることができました。一方で、実際にA/Bテストの結果をもとに今後の方針を決定する際、テスト実施自体に対する関係者からの合意や納得を得る難しさを改めて感じる機会もありました。 分析のポイントは? そこで、What、Where、Why、Howの各ステップに沿って分析を進める重要性を認識しました。特に、WhyとHowの部分にスムーズに入れるよう、まずはWhatとWhereについて関係者全員で共通認識を持つことが不可欠です。また、総合演習では「満足度が下がっている」という結果だけに飛びつかず、どこに問題があり、なぜそのような状況に至ったのかを分解し、分析・判断することの大切さを学びました。 具体策はどうすべき? 具体的には、以下の点が重要です。まず、What、Where、Why、Howの各段階に沿って、問題を丁寧に分解すること。次に、不正解の仮説は存在しないという前提に立ち、考えられる仮説を2~3案以上、網羅的に検討する癖をつけること。そして、A/Bテストやファネル分析を通じて仮説の正否を検証し、施策の精度向上につなげることが大切だと感じました。

デザイン思考入門

顧客に寄り添う心に響く学び

顧客中心の真意は? デザイン思考の根本は「どこまでも顧客に関わろうとする人間中心」であることを理解しました。その特性から、仮説検証や分析に偏ったアプローチと比べると、ビジネスシーンでは特定の顧客に限定されたサービスや商品に偏りがちになるのではないかという懸念もあります。しかし、市場環境を考えると、初めから万人ウケするものを作るのはほぼ不可能であり、結果として「当たり障りのない、誰にもハマらないもの」に陥ってしまう恐れがあります。データや数値だけでは本当に解決すべき課題にたどり着くことはできず、市場拡大の基本としてアーリーアダプターを捉えることが重要だと考えています。 本質課題は何か? このような背景から、ヒット商品やヒットサービスを生み出すためには、まず具体的なペルソナを設定し、相手を深く知り、共感することから顧客の本質課題を発掘する必要があると考えました。さらに、課題解決に向けた柔軟な発想へとつなげられるのではないかという見方を得ました。 どこで成長する? この講座を通しては、①顧客の本質課題を引き出す手法、②相手への共感とその伝え方、③プロダクトの具体化に向けたビジュアル化の手法という3点を重点的に学んでいきたいと思っています。担当している商品の拡販戦略を検討する際には、顧客課題をより深く理解し、それをメッセージ作りに反映させること、そして顧客に寄り添い共感を伝えるコミュニケーションを心掛けたいと考えています。「当たり障りない」から脱却し、具体的なペルソナを通じて本質課題を引き出すことを目指します。 直近の実践は如何に? また、学んだスキルやフレームワークは、現状担当している社内研修の企画にも積極的に取り入れ、実践していく予定です。直近では顧客ヒアリングの機会があるため、講座で学んだことをすぐに生かし、次年度の実行計画策定の際にもデザイン思考のアプローチを意識して活用していきたいと思います。

データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

データ・アナリティクス入門

仮説と問いで広がる学び

結論と問題は何が違う? ケーススタディを通して、私は結論の仮説と問題の仮説の違いについて学びました。これまで結論と問題の仮説を意識することはほとんどありませんでしたが、結論の仮説は答えを先に仮定してから分析を進める手法であり、問題の仮説は問題の本質や真因に迫りながら「なぜ?」と問い続ける流れであると理解するようになりました。 考えの整理はどうする? また、仮説を立てる際には、自分の考えを整理し、納得感や他者への説明力を高めるために、網羅性が非常に重要だと実感しました。誰が読んでも理解しやすいようにフレームワークを活用することで、従来の方法に比べ、思考が整理され、見やすく理解しやすいアウトプットが得られると感じています。 時間軸の重要性って? さらに、課題を考える際には、過去・現在・未来という時間軸で捉えることが重要であると学びました。問題がいつ発生しているのかを明確にすることで、現在の状態を正確に把握し、なぜその状況になったのか過去を振り返り、将来の理想像に向けて現状で何をすべきかを考えることで、より納得のいく議論ができると感じています。 企画で何を考える? 通常の業務において新商品や新機能を企画する際は、価値(魅力)とコストのバランスを考慮します。コストを削減する方法を検討する過程では、複数の仮説を立てるとともに、迅速に検証を行いアウトプットに結びつけることが求められます。うまくいかなかった仮説に対しては、なぜ失敗したのかをしっかり確認し、次につなげることが大切です。 国際展開の特徴は? また、現在の業務では、同じような製品を複数の国で展開しています。各国の特徴や強み・弱みをフレームワークを用いて整理し、そこから抽出した課題に対して改善策をいくつかの仮説として立て、検証を実施しています。このプロセスをグループ内で共有することで、より広い視野での理解が進み、全体のパフォーマンス向上につなげています。

クリティカルシンキング入門

小さな振り返りが大きな学びに

小さな仕掛けはなぜ? クリシンを効果的に実践するためには、日々の小さな「仕掛け」が大切だと実感しました。例えば、毎日10〜20分の学習時間を確保し、学習後には必ず一行でも振り返りを書くことで、自分の気づきや成長を記録することを意識しています。 どんな学習方法が有効? また、以下のような学習方法を取り入れることが有益だと感じています。まず、ニュース記事を一つ選び、主張・根拠・前提を分けてメモし、100字以内で要点をまとめる方法です。さらに、身近な課題に対してロジックツリーを作成し、「なぜ?」を三回掘り下げることで、根本原因を明らかにし、解決策を複数考える手法や、自分の意見に対して反対意見を三つ挙げ、どの意見が最も説得力があるか比較する練習も取り入れています。 思考力はどう養う? これらの取り組みにより、表面的な情報や過去の経験だけに頼らず、現状の課題を深く掘り下げ、物事の本質を見極める思考力が養われると感じます。 顧客へのアプローチは? 所属する営業部門では、まずお客様の真のニーズを発掘するため、表面上の反応だけでなく、その背景にある要因を徹底的に探ることを実践したいです。お客様が現時点で製品購入を必要と感じていない場合でも、その理由を深く掘り下げ、自発的な購買行動を促す具体的な戦略に落とし込むことが求められます。 論理的提案はどう実現? さらに、常に「なぜ?」と問い続けることで、見落とされがちな問題点を浮き彫りにし、課題の深掘りと仮説検証を徹底する姿勢を持ちたいと思います。これにより、社内ミーティングや商談の場面で、客観的かつ論理的な提案ができると考えています。 判断力はどう高める? 最後に、情報を客観的に分析し、思い込みや経験に頼った偏りを排除することで、判断力のクオリティを向上させることを目指します。これらの学びや取り組みを通じ、日々の業務の質の向上につなげていきたいと思います。

デザイン思考入門

現場の声で磨く課題解決力

共通課題は何だろう? 店舗のオペレーション課題解決においては、単に会議での発言や市場視察の情報だけを頼りにするのではなく、どの店舗でも共通する課題なのかどうかを十分に確認して定義することの重要性を実感しました。 定量と定性はどうなる? そのため、普段から実施しているアンケートなどによる定量分析と、ヒアリングや現場の観察を通じた定性分析を併用することを、これまで以上に意識していきたいと思います。特に、定性分析においてはコーディング手法の活用をすぐに実践する所存です。 ペルソナはどう捉える? また、現状を把握するだけでなく、具体的なペルソナを特定し、ユーザーの感情にまで思いを巡らせることが大切だと感じました。ペルソナをいくつか明確に意識することで、本当に解決すべき課題が何か、その根本的な原因は他にもないかと前提を疑いながら多角的に考える習慣が身についてきました。 課題定義は進む? 今後は自分一人にとどまらず、周囲のメンバーも巻き込みながら課題定義を進めていくつもりです。課題定義のフェーズでは、①問題の本質を捉える、②洞察の整理と可視化、③顧客課題仮説の作成、④ユーザー中心の視点の維持、⑤検証と改善という5つのポイントが重要だと感じました。 潜在課題に気づく? 中でも、カスタマージャーニーマップを活用する点と、顧客課題仮説を作成する際にシンプルで明確な課題文を構築する方法に大きな気づきを得ました。カスタマージャーニーマップはユーザーの行動だけでなく感情の流れにも着目することで、潜在的な課題を浮き彫りにしますし、明快な課題文はまだ気づかれていなかった潜在的な問題に気づく手助けとなります。 アウトプットは十分か? 最後に、ある講師の「学びの深さはアウトプットの量に比例する」という言葉が心に響きました。今後も実務を通じて、積極的にアウトプットを行いながら学びを深めていきたいと思います。

データ・アナリティクス入門

データ分析でビジネスの謎を解く方法

売上判断で何を比較すべきか? 売上の良し悪しを判断するとき、「大きい」「小さい」「高い」「低い」などの表現を用いる場合、必ず何と比較しているかを示すことが重要です。この比較によりデータの加工を行うと、さらに新たな視点が見えてきます。 代表値とデータ分布をどう見る? まず、データの特徴を一つの数字に集約して捉えます。代表値や平均値を見るとき、その数字だけで判断せず、データの分布も合わせて考慮する必要があります。 データ視覚化の重要性は? 次に、データを視覚的に捉えることが重要です。データをグラフ化、ビジュアル化することで、データ間の関係性を視覚的に捕えることができ、特徴の把握や解釈、仮説立案が容易になります。目的に応じて適切なグラフ(円グラフやヒストグラムなど)を選ぶことで、比較・分析がしやすくなります。 数式で関係性を捉える方法は? さらに、数式を用いて関係性を捉える方法もあります。代表値として単純平均、加重平均、幾何平均、中央値、そして散らばりを示す標準偏差を利用します。単純平均だけでなく、他の代表値もしっかりと使いこなすことが求められます。 仮説検討で何を探る? これらの手法を用いて数字を算出し、比較することから仮説を立て、傾向や問題点を見つけるには、個人の経験や知識、世間の動向やトレンドを把握することが重要です。月次報告書にこれらの比較方法を取り入れ、仮説の立案までをセットにし、分析報告をまとめることが目標です。 来週火曜日の報告までにすべきことは? 来週火曜日に役員へ報告する資料が必要です。この資料は、単に実績を表としてまとめるだけでなく、そこから読み取れる傾向も分析し、上司に報告する内容にしたいと考えています。仮説については、実際の現場の責任者とも会話し、その仮説にどれほどの差異があるかを検証し、次回以降の仮説検討の際に参考にしていきます。

データ・アナリティクス入門

一歩踏み出す再学習の軌跡

全体像を再確認? これまでの学習内容を振り返る中で、全体像を再確認できたと感じています。毎週の講義では、個々の演習を通じて内容を確認する機会がありましたが、連続性が不足していたため、先週と今週の学習でその点が整理された印象を受けました。また、従来のやり方や考え方にとらわれがちであることを学びの中で指摘され、再度学び直す必要性を実感しました。 特許情報の活用は? 環境分析においては、特許情報と非特許情報を組み合わせた手法のニーズが高まっていることから、今回の学習で得た知識や手法を取り入れていきたいと考えています。特に、分析は比較が前提であることや、「目的」の重要性について、チーム内での認識が揺らがないよう常に確認する点、そして仮説志向で同じパターンに偏りがないか、使用するデータが適切かを検証すること、さらにWhat-Where-When-Howの観点から確認と検証を行うことが必要です。 データ分析の課題は? これまでの業務を振り返ると、部署や立場が異なるチームでデータ分析に基づく活動を進める際、結果を重視した分析や、データから無理に仮説を導いたり、エイヤーで問題設定を行ったりしていたことに気付きました。今後は今回学習した流れをもとに、自らの手でハンドリングできるよう、実践の機会を積み重ねたいと思います。 問題解決の手順は? また、データ分析に限らず「問題解決のSTEP」を意識して業務に取り組むようになりました。分析を進める過程で、常に「目的」の認識に相違がないか確認し、スケールの大きい要求に対しては漠然とした要求を細分化し、より適切なデータ分析とアウトプットが実現できるよう努めたいと考えています。まずは、自分が担当するチームの開発テーマや製品の規模に合わせたデータ分析を実施し、その結果を第三者であるチームに説明することで、考え方や手順の定着を図っていきたいです。

データ・アナリティクス入門

データ分析で解く業務の課題解決法

データ分析はなぜ有用? データ分析は、問題解決を確実に進めるために非常に有用であると理解しました。ライブ授業では、前提条件が整理されていたため、問題解決のステップである問題箇所の特定や絞り込みが比較的容易でしたが、実際のビジネス現場では、これらのステップが難しく、訓練が必要だと強く感じました。 売上減少はどう解決? 今回のライブ授業では、事業運営における売上減少という問題をデータ分析で解決する演習を行いました。その際の問題解決のステップは、1. Whatで問題を明確にし、2. Whereで問題箇所を絞り込み、3. Whyで原因を分析し、4. Howで解決策を考えるという流れです。 具体分析の進め方は? 具体的には、売上減少という問題を特定し(What)、売上を構成する客単価や客数のデータ分析を通じて問題の所在(Where)を特定しました。その要因を仮説・検証により原因分析(Why)し、次に打ち手を判断・評価する(How)という手順です。分析においては、データに基づいたストーリーを構築することが重要です。比較対象を明確にし、データを加工して必要な情報を可視化することがポイントです。 差異の原因は何? 日常業務でも計画と実績との差異分析を行っていますが、浅はかな要因分析に留まらないように、原因分析を網羅的に行うことが重要だと考えます。また、問題を明確にし、問題箇所を特定し、原因分析し、打ち手を考える一連の手順によって、データ分析が目的化せず、何を主張するための分析なのかを振り返ることができます。 定着はどのように? これらの問題解決のステップを習得し、データ分析を取り入れた一連の流れを月に2回以上実施することで、手法の定着化を図りたいです。特に、問題箇所の特定(Where)に苦手意識がありますが、事例を積み重ねることで対応時間の削減にも取り組みます。

データ・アナリティクス入門

STEP活用で見える問題解決の極意

分析と課題の関係は? 今週の学びでは、これまでの講義全体を振り返る中で、改めて以下の点の重要性に気づきました。まず、分析とは比較を通じて違いを明確にする作業であること。そして、問題解決には「What(何が問題か)」、「Where(どこに問題があるか)」、「Why(なぜ問題が起きたのか)」、「How(どう対応するか)」という4つのSTEPがあり、この順に検証することで、チーム内で適切な意思決定や対応策の精度向上につながるということです。また、仮説思考の重要性も学びました。一方で、仮説にとらわれず現状のデータから何が分かるのかを整理する必要性も感じました。 目的は本当に何? これまでデータ分析=分かりやすく加工する技術(プレゼンテーション資料や表計算ソフトのスキル)と捉えがちでした。しかし、本講座を通して、何よりも分析する「目的」が重要であり、見せ方や手法だけでなく本質に気づくことができました。 データから何が見える? 現業では直接データを加工する機会は少ないものの、提示されたデータから「なぜこの課題意識を持ち、どのように分析したのか」という分析者の視点を意識して読み解くことが求められています。また、クリエイティブ業務においては、どうしても「HOW」から入りがちなチームメンバーに対し、この問題解決のSTEPを活用して共通の目線を持つことが有効に感じられます。 仮説も大切なの? さらに、新規事業の立案時にも、従来のフレームワークに加えて仮説思考を取り入れ、「データを分け、整理し、比較する」という基本事項を怠らず進めていく重要性を実感しました。 実践はどう進める? 実際に問題解決のSTEPを業務で取り入れ、チーム内での情報共有や課題の整理を通じて、よりシャープな打ち手(How)を見出すための一助になっていると感じています。

「検証 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right