データ・アナリティクス入門

論理で解く!現場課題の4ステップ

問題解決の手順は? 「問題解決の4ステップ」と「ロジックツリーを使った分解思考」が今週の学びの中で特に印象に残りました。まず「問題解決の4ステップ」では、「何が問題か?(What)」を明確にし、「どこに問題があるか?(Where)」でその範囲を絞り込みます。さらに、「なぜ起きているのか?(Why)」で原因を深堀りし、「どうするか?(How)」で具体的な対策を検討する流れを学びました。このフレームワークを用いることで、感覚や経験だけに頼らず、論理的に課題を捉えられると実感しました。 ロジックの整理は? また、ロジックツリーの手法では「モレなく・ダブリなく(MECE)」を意識しながら、問題やテーマを枝分かれさせ、整理する方法が紹介されました。例えば、現場で発生する遅延という問題に対して「人」「資材」「天候」などのカテゴリーに分解し、それぞれを詳細に検討することで、原因の見落としを防ぐことが可能となります。さらに、各要素を深掘りすることで、より具体的な解決策に結び付けられる点が非常に実践的だと感じました。 再現性は保たれる? これらの思考法を現場の課題整理に活用することで、感覚や経験に頼らず、再現性のある改善が実現できると考えています。たとえば、工期が予定よりも遅れている場合には、まず「What:何が問題か?」で遅延の事実を明確にし、「Where:どこに問題があるか?」で特定の工程に絞ります。そして、「Why:なぜ起きているのか?」で人員不足や資材納品の遅れ、天候の影響など原因をロジックツリーで分解し、それぞれに対して「How:どうするか?」の具体策を検討します。 トラブル対応は? 実際に現場で問題やトラブルが発生した際には、まず「何が問題か?」を関係者と共有し、事実を明確にします。その上で、問題のある工程や範囲を「どこに問題があるか?」の観点から洗い出し、ロジックツリーを活用して「なぜ起きているか?」を検証します。原因が複数考えられる場合には、MECEを意識して整理し、各要素に対して「どう対応するか?」という具体策を検討することが重要です。 習慣化は可能? 今後は、毎日の朝礼後など短いミーティングを通してこの4ステップを活用し、現場の問題を見える化・言語化する習慣を身につけたいと考えています。個人としても、業務日報にこのフレームワークを取り入れることで、思考力と実践力をさらに高めていきたいと思います。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

クリティカルシンキング入門

本質に迫る!自問自答で見つけた答え

自問自答の価値は? 物事を考える際に、目先のことから手を付けるだけでは本質にたどり着けず、迷走してしまうことがあります。しかし、「何をしたい?なぜしたい?本当に?」と自問自答を繰り返すことで、本質が見えてくることがあります。このようにして、本当に必要なものを見つけることができます。 多角的な視点の重要性とは? また、自分の思考には偏りがあることを自覚することが重要です。経験や現職場の影響で視点が偏り、答えが浅くなりがちです。そのため、色々な視点や視座から物事を考える必要があります。例えば、自分・他人・社会・若者・年寄・男性・女性・外国人・障碍者など、多くの視点があります。多くのことに着目することで、新たな発想や気づき、リスクを知ることができます。 もう一人の自分を育てるには? 偏りを無くすためには、もう一人の自分を育てる必要があります。このもう一人の自分とは、「その答えで本当に良いのか?」「本当にそれがやりたいことなのか?」などを問い続ける存在です。結論を出す際に、十分に考えたかどうかや、考えが適切だったのかを確認するために必要です。 クリティカルシンキングの効果は? 職場で意見が分かれたり、目的が明確でない場合、クリティカルシンキングを用いたディスカッションが非常に効果的です。自分や他者の意見をディスカッションすることで、本当の目的や問題点、思考の偏りなどが明らかになります。見えてきたことを自分目線・他者目線・もの目線で深堀りすることで、より良い解決に繋がります。このようなディスカッションは、目的の整理、手法の選択、共通認識のすり合わせなど、さまざまな効果を期待できます。また、学習の面でも非常に効果的です。視野が狭い同僚や部下、自分自身も含め、繰り返し教え合うことで偏った見方を回避し、お互いに成長できます。これにより、業務の効率化や高品質化に繋がると考えます。 目的を考えることの意義は? 仕事や遊びなど、何事にも目的を考えることが重要です。自身だけでなく、関係者とディスカッションすることで目的を明確にできます。 三つの視を意識する意義は? 「自分・他人・もの」の三つの視を常に意識し、あらゆる角度から物事を考えることが求められます。頭で考えるだけでなく、他者に伝えるアウトプットトレーニングを行い、フィードバックをもらうことで更に視点を増やし、もう一人の自分を成長させることができます。

データ・アナリティクス入門

小さな復習が未来を開く

比較の価値って何? 「分析の基本は比較」という視点を再認識しました。自分と他者、自分がありたい姿、そして現在の自分を丁寧に比較することが、より深い洞察へとつながると実感しています。また、学習においては一夜漬けややっつけ仕事ではなく、たとえ1日5分の復習でも習慣として続けることが重要だと痛感しました。特に、ビジネスの現場における影響度を考えると、その積み重ねが大切だと考えています。 原因の探し方は? 分析のプロセスでは、結果だけでなく原因を深く掘り下げる姿勢が必要です。数字に裏付けられたストーリーを構築するためには、飛びつかず、しっかりと要素を分解して検証することが求められます。やみくもな対応では、納得感や信用を得るのは難しいと感じました。 課題はどこにある? まず、フレームワークなどの問題解決の手法については、理解しているつもりでも実際の問題に直面すると活用できていない部分が浮き彫りになりました。たまたま効率化には成功したものの、その他の面では十分に実践できておらず、今後、時間のかかる業務のプロセス改善に取り組む必要があると考えています。 新知識はどう活かす? また、ABテストといった新たな知識の習得ができた点は大きな収穫でした。勉強の習慣化に向け、意識的な時間確保と無駄時間の削減に努め、受講者のコメントからも自分の表現不足を認識する機会となりました。講座終了後は、講師の授業や動画、受講者の意見を総復習し、理解をさらに深めるつもりです。 図解で見やすく? さらに、シンプルながらも資料に図を取り入れることで、情報を視覚的に整理する試みも始めています。作成技術は向上途上ですが、引き続き動画などでスキルアップを目指していきたいと思います。 仮説の不足は? 一方で、学び続ける意欲はあるものの、仮説を作成する基礎知識が不足しているため、仮説の質や数が十分でなく、次につなげることが難しいと感じました。仕事におけるレアケースの振り返りや因果関係の検討が、これからの課題であると考えています。結果だけに注目するのではなく、その背後にある原因を明らかにすることがポイントとなります。 本質をどう捉える? 今回の学びで特に印象に残ったのは、「目に見えるものにすぐ飛びつかない」という点です。大切な要素は必ずしも目に見える形で現れるわけではないという教訓を、今後の業務にも活かしていきたいと思います。

データ・アナリティクス入門

データ分析の成功術を学ぶ旅

目的はどう設定する? データ分析を効果的に行うためには、いくつかの重要なポイントを押さえる必要があります。まず、データ分析に取り掛かる前に、目的や仮説を具体的に設定しておくことが重要です。これにより、分析がスムーズに進むだけでなく、目標に対して効果的な手法を選ぶための指針となります。 切り口はどう選ぶ? 次に、分析のステップとして、問題解決のプロセスには「what, where, why, how」といった段階を経ることが挙げられます。特に、データをどの切り口で見るかを判断する際は、その切り口が解決に役立つかどうかや、データが入手可能かどうかを考慮しなければなりません。また、平均値を用いる際には、データのばらつきも確認することが不可欠です。代表値を選ぶ場合も、元データの傾向を理解しておくことが必要です。 数値の意味はどう見る? 実数と率を確認することも重要です。たとえ割合が大きく見えたとしても、実数が少なければ優先度は高くないかもしれません。分析はただ闇雲に行うのではなく、数字の根拠に基づいたストーリーを描くことが求められます。そのためには、データの傾向をつかみ、特に見るべきポイントを明確にする必要があります。データは伝えたいことが分かりやすい形に加工することが望ましいです。 解決策はどう選ぶ? 解決策を選定する際には、得た知見をもとに複数の選択肢を洗い出し、判断基準を持って選定することが求められます。例えば、販促施策の振り返りでは、単に目標に対する数値を比較するのではなく、何が成功したのか、どんな改善が必要か、そしてその理由を深掘りすることが重要です。 SNS戦略は見直す? さらに、自社のSNS運営方針の再検討においては、現状の方針が適切かを評価し、必要であれば異なる方向性を検討することも考慮すべきです。インプレッションやコンバージョン率などのデータを参考にすることで、同じ目標に対しても新しいアプローチを見つけることが可能です。 検証はどのように進む? 仮説を立てた後、その検証を進める際には、結論に飛びつかず、複数の視点から考慮することが重要です。これにより、示唆の幅を広げることができ、問題解決に向けたステップを適切に踏むことができます。分析を行う際に少しでも学んだことを次に活かし、適切な場面で適切な手法を用いることが、成功の鍵となります。

クリティカルシンキング入門

ロジックツリーでシステム開発の要件定義に挑む

思考の偏りを防ぐには? 考えが偏りやすいことと、その防ぐ手段があるという2点が大きな学びでした。 防ぐ手段として、まずロジックツリーについて述べます。以前からロジックツリーという言葉は知っていましたが、「いかにMECE(Mutually Exclusive, Collectively Exhaustive)に分けるか」が大切だと考えていました。しかし、実際にはMECEはあくまで付随事項であり、自分の思考を見える化するのが一番の目的だと感じました。 切り口を考える重要性 次に、「切り口を考える」についてです。目的に応じた切り口を考え、それに沿って思考を進めることの重要性を理解しました。この方法はロジックツリーの上位に位置する考え方で、常に意識する必要があると理解しました。「切り口を考える」は知的体力が必要となる内容だと思うので、これをどのように習慣化し、忌避感をなくすかがポイントだと考えます。 設計前の手法の重要性とは? 証券会社のシステム開発を担当していますが、特に具体的な設計・開発に入る前の「要件定義、プロジェクト計画時」にこの手法を利用したいと考えています。具体的には、以下の点について検討・実行に活用したいです。 - 具体的な要件を引き出す前に、開発対象の業務で一番重要なものは何か - プロジェクト計画を行う上で、一番重要視するファクター(お金なのか、時間なのか、等) - 要件を引き出すにあたり、どのようなコミュニケーション方法や準備が必要か - ステークホルダーの中でどのようなコンクリフトが発生し、それをいかに解決するか 明確化をどう習慣化する? 現在は過去の経験に頼って進めていますが、WEEK1の講義を受け、「目的の明確化」「考えの偏り」「その防止策」の3点を学びました。今後はこれらの点を意識しながら、具体的な作業に着手する前に確認し、学ぶ内容を活用していきたいと思います。 まずは「目的の明確化」を習慣化します。そこから考えるべき論点を洗い出すことが必要です。これまでは思いついたものを無批判に受け入れ、最終成果物の作成まで進めていましたが、今後は立ち止まり、他に論点がないか、どのような視点・視野で論点を洗い出したかを確認し、その後の作業内容を決定していきます。将来的には、上記の作業の中でロジックツリーを活用し、精度を上げられるようにしたいです。

クリティカルシンキング入門

数値分析にひたる楽しさを発見

数字の分解をどう進める? 数値を分析する際には、その分解が重要です。まず、視覚的に数字を分解する方法として、グラフや率に変換することで、新たな視点が得られます。また、年齢別、男女別、天候、曜日、時間軸、新規既存、場所、近隣施設、売場面積など、あらゆる角度から数字を分解することで、様々な発見が可能です。繰り返し分解することで、新たな傾向が見えてくることもあります。分解しても何も見えない場合は、他の切り口を試してみるのが良いでしょう。 数字分析の重要ポイントは? この分解の作業は、まるでダンジョンを探検するようなもので、新たな気付きを得るほどに面白くなります。しかし、無秩序に進めるのは危険です。そこで、MECE(ダブりなく・モレなく)を意識し、網羅的な数値の切り口を探すことが重要です。また、期間、金額、人数などの下限値や上限値を定義して分解するのも効果的です。 おすすめの分解手法は? 分解手法としては、以下の3つをおすすめします。 1. 層別分解:全体を2つ以上のグループに分ける方法です。例えば、年齢別や所得別に分解します。 2. 変数分解:売上や単価、販売数をもとに、利益率や原価率などに変えて分解する方法です。 3. プロセス分解:入店前、入店後、商品選択・支払い・退店などのプロセスごとに分解する方法です。この手法は、業務効率の改善にも役立ちます。 プロセス分解で何が見える? クライアントからの相談や自分たちの業務効率改善において、プロセス分解は非常に有効です。業務プロセスのどの部分で時間を使っているのか、その部分をさらに細分化し、どの作業に時間がかかっているのかを分析します。それにより、課題解決に繋がり、業務効率改善や業務内容の見直しなど、幅広い提案が可能となります。 問題解決へのステップは? プロセスに着目しながら業務を遂行することで、偏りを拭う習慣をつけ、問題のあるプロセスを分解してみることが大切です。その結果から多くの気付きを得て、解決の糸口を探りましょう。導き出した答えを他者と共有し、さらにブラッシュアップすることも重要です。これにより、3つの視点・視座・視野を広げることができます。 行動計画をどう立てる? 最後に、これらを活用するために計画的なトレーニングを行いましょう。まずは行動計画を立てることから始めて見てはいかがでしょうか。

データ・アナリティクス入門

対概念で拓く経営戦略の新視点

対概念の意義は何? 対概念とは、ある概念に対して反対または対照的な意味を持つ別の概念を考えることで、物事をより明確に理解し議論の幅を広げる手法です。問題解決に取り組む際は、原因をプロセスに分解する方法、複数の解決策を根拠をもって絞り込む視点、A/Bテスト方式を活用した実践検証、そしてデータ分析を組み合わせた段階的な課題抽出と検証の流れが重要となります。 M&Aリスクはどう考える? 例えば、M&A案件のリスク評価と意思決定においては、ポジティブな要素であるシナジー効果と、ネガティブな統合リスクを対概念として捉え、財務リスク、組織文化、オペレーションといった要因に分解して考えます。各リスク要因を定量化することで、M&A後の成功確率を高めるためのより正確な判断が可能となります。 統合戦略はどれが最適? また、企業の経営戦略策定、特にM&A後の統合戦略においては、段階的統合と急速統合という二つのアプローチを検討し、A/Bテスト方式でそれぞれの効果を比較します。統合プロセスの進捗データや業績、従業員満足度といった具体的な指標をもとに、どちらの戦略がより良い成果を生むかを実証的に評価していきます。 リスク評価の秘訣は? さらに、リスク評価のためのフレームワーク作成では、過去の成功事例や失敗事例をデータベース化し、財務、組織文化、オペレーション、市場環境といった指標を基にリスク評価シートを作成します。これにより、各案件ごとのリスクが客観的に評価され、精度の高い投資判断を導き出すことが期待されます。 定量化結果は何? 続いて、データ分析を用いた定量化では、財務データや従業員エンゲージメント、企業文化の適合度を測る指標を設定し、回帰分析や相関分析を活用します。特に、文化の不一致が従業員の離職率に与える影響などを数値化することで、過去のM&Aデータから成功パターンや失敗パターンを明らかにし、これを次の意思決定に生かすことが可能となります。 結果の信頼はどう確保? 対概念とA/Bテストを通じて物事を深く理解しようとする姿勢は非常に評価できます。今後は、どのような状況で対概念を活用するのが効果的か、またA/Bテストで得られた結果の信頼性をどのように確保していくかといった点について、さらに思考を深めながら実践につなげていくことが求められます。

データ・アナリティクス入門

問題解決の思考法でデータ分析を深化

問題検討の枠組みとは? 何、どこ、なぜ、どうの枠組みで問題を検討することは、出発点を探しやすくする重要なプロセスです。フリー記述の演習では、当初は部分的な問いしか思いつかなかったものの、この枠組みに沿って順を追って考えることで、問題を網羅的に洗い出しやすくなりました。これは、思考の癖を理解し、問題を整理するための効果的な手法です。 データ分析の新たな切り口は? 実際のデータ分析においては、データを見る切り口のバリエーションを増やすことが大切です。複数の種別や分類を挙げる演習では、初めに思いつくのは定性データ寄りでしたが、自分の事業や組織で扱うデータは感覚的に種別を想起しやすい反面、感覚に頼ると重要な切り口を見逃す可能性があります。これを避けるために、MECE(Mutually Exclusive, Collectively Exhaustive)な分け方を模索し、多様な切り口に触れることが重要だと感じました。 退職分析で考慮すべき点は? 私の業務では、月次で退職分析のデータを集計しており、分析の切り口をいくつか決めてデータを蓄積しています。退職関連の指標は、年度を通して初めて結果の出るものが多く、年間を通した考察を3月末までのデータで行っています。その際、現行以外の切り口でもデータを分析する必要があるのではないか、と常に考えています。 残業報告の改善点は? また、全社の残業報告を担当しており、毎月、残業代と残業時間の集計および考察を行っています。比較の切り口として、前月との比較、昨年同月との比較、部署別の基準を超えたスタッフ数を用いています。昨年比で残業代が減少したとしても、スタッフ数にも変動があり、一人当たりの残業時間など、データの見方を工夫する必要があります。年度末の報告には、これらのポイントも含めていく予定です。 分析のさらなる深化は可能? 実務の中で、他にも分析を深めることができるデータがないか探してみることが必要です。特に、バックオフィス部門の費用の予実分析を担当していますが、変数が少なく、問題そのものの特定だけにとどまりがちです。これにより定性的な要因分析に発展してしまうのですが、分析の切り口を工夫すれば変わるのかもしれません。まだその感覚が十分に掴めていないため、グループワークなどで相談しつつ、さらなる改善を図りたいと思います。

データ・アナリティクス入門

実践で磨く解決力の秘密

プロセスはどう区別? 今週は、問題解決のプロセスにおいて、仮説を立てて検証し、解決策を考えるための考え方を学びました。まず、WHYの段階では、各プロセスを分けて考える手法の重要性を再認識しました。プロセスごとに名称や意味合いを設定し、母数や基準が異なる場合には「率」といった数値化の視点を取り入れることで、どの段階で数値が少なく、全体の推移がどうなっているかをバランス良く把握することが大切だと感じました。 対概念の効果は? また、原因の仮説を立てる際には、「対概念」という方法を用いることで、問題に関わりのある要素を洗い出し、それらを2つの対に分けることで、より幅広い視点から原因の可能性を探るアプローチの有効性を学びました。 A/Bテストの意味は? さらに、HOWの段階では、A/Bテストを通して仮説を実際に試し、データを集計しながら解決策へと繋げる方法について学びました。A/Bテストを行う際は、①目的と仮説を明確にすること、②一度に一要素ずつ検証すること、③条件(時間や期間など)を揃えることの3点が重要であり、これによりリスクを抑えつつ効果的な施策の検証が可能となります。 知識集約はどう進め? また、今回の学びを通じて、これまでの知識を集約し、プロセスを意識して丁寧に分析する重要性を再認識できました。仮説設定の根拠を明確にし、必要なデータを整理することで、より高度な分析に繋げるための前提意識を持つことが求められると感じました。 薬剤師業務の改善は? 一方、薬剤師業務のボトルネックの分析においては、業務を細かいプロセスに分解し、どの段階で時間と労力がかかっているかを明確にすることが、従業員の残業時間や患者の待ち時間短縮に直結する重要なポイントであると学びました。こうした検証を通して、設備の導入などの改善策の効果を試験的に確かめ、必要に応じて他の現場にも展開する判断材料とする考え方は、非常に実践的だと感じました。 A/B分析で見直す? さらに、部内でA/B分析を活用して、例えば店舗の処方箋枚数の伸び悩みという問題に対して、複数の要因を一つずつ検討し、原因を絞り込んだ上で対策を考える手法も学びました。これにより、問題の背景にある具体的な要因を多面的に理解し、適切な対策立案へとつなげることができると実感しました。

リーダーシップ・キャリアビジョン入門

リーダーシップを磨くチームの秘訣

マネジアル・グリッド理論とは? 優秀なリーダーの行動を分析するためのマネジアル・グリッド理論は、リーダーの行動を「人への関心度」と「業務への関心度」の二つの軸で評価することで、リーダーが周囲に与える影響を客観的に分析する手法です。 パス・ゴール理論の重要性 一方、状況適合理論の一つであるパス・ゴール理論は、リーダーが「環境要因」と「部下の適合要因」を考慮し、適切な行動をとることが重要であると説きます。具体的には、リーダーは同じ部下であっても、業務や職場の状況に応じて支援の仕方を柔軟に変える必要があります。さらに、チーム内でも、部下の能力やスキル、自己解決意欲に応じてリーダーシップのスタイルを調整することが効果的です。 リーダーとしての自己振り返り 自身の仕事で振り返ってみると、メンバーに仕事を任せる場面や新たなチームを結成する場面で、この理論を活用できると感じます。 メンバーへの適切な指示方法は? メンバーに仕事を任せる際には、例えば既存業務において、経験やスキル、自発性・成長意欲の異なるメンバーに対して、指示や支援の程度を調整します。A氏には自立性を活かし、目的とゴールを伝える程度で任せます。一方、B氏には課題点を共有しつつ意見を募り、C氏には初期のタスクを具体的に教えた上で任せます。新規業務では、特にC氏に対して細やかな指示と進捗管理を行います。 チーム結成時のリーダーシップ選び また、今後チームを結成する際には、マネジアル・グリッドを利用してサポート役を選定したいと考えています。私は自身を「タスク志向型」もしくは「タスク志向型と中間型の間」と認識していますが、「社交クラブ型」のサブリーダーを組み合わせることで、チームが一層円滑に機能するでしょう。 フィードバックの重要性は? 重要なのは、部下の適合要因を把握し、それに基づいてリーダーシップの方法を試行錯誤し、適応させることです。また、マネジアル・グリッド理論を基に、自身のリーダーシップ行動についてメンバーや上司からフィードバックを求めたいと思います。これにより、他者の認識と自分の認識に差異がないか確認し、さらにはメンバーや上司がこのアプローチに満足しているか評価してもらいたいです。メンバーからの直接的な評価が困難な場合、上司に間に入ってもらうことを考慮しています。

データ・アナリティクス入門

数字が語る!原因分析のコツ

原因分析のポイントは? 「why:原因を分析」という問題解決のステップについて学び、実際の業務に活用するためのヒントを得ることができました。原因分析では、問題がなぜ発生したのかデータを基に追及し、原因が特定できた後に解決策を検討するという流れを確認しました。 プロセス分解の極意は? この授業で得た学びは主に2点あります。まずは、データをプロセスに分けて考える方法です。課題では、ウェブサイトの広告表示から体験レッスンへの申込に至る一連のプロセス(広告表示→広告クリック→申込)の各段階のデータを比較し、同じ経路を辿った中でどこで数値が落ちているかを検証しました。比較する際は、各プロセスの分母が異なるため、率で示す点が重要です。率が低いプロセスに問題があると考え、具体的な原因を探る有効な手法だと実感しました。この方法により、どこから改善に取り組めばよいのかが明確になり、必要なデータの選定も容易になると感じました。 原因思考の広がりは? 次に、原因を考える際は思考の幅を広げる必要があると学びました。フレームワークの一つとして、対概念という視点を活用する方法があります。たとえば、「自社の戦略に原因がある」と「自社の戦略以外の要素に問題がある」という二つの視点から原因を考えることで、一方向への固執を避けることができます。この手法は、原因の決め打ちを防止するのに非常に有効だと感じました。 遅延の要因は? 実際の業務で、業務の遅れが他部署に影響を与えている場合、まずはその業務を複数のプロセスに分解し、どの段階でボトルネックが発生しているのか、数字を元に比較することが有効だと考えます。原因追求においては、MECEの考え方も必要不可欠です。さらに、原因に関わる要素が明らかになったら、それ以外の可能性も併せて検討することで、一面的な見方に陥らずに対策を練ることができると実感しました。 学びをどう今後活かす? この学びからは、事象には必ずプロセスが存在し、分解して比較することで原因を特定できること、そしてよい事例についてもプロセスの整理が応用可能であることを改めて確認しました。今後は、問題だけでなく成功事例にもプロセスの視点からアプローチし、より幅広い視野で原因と対策を考えられるよう努めていきたいと思います。

「解決 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right