クリティカルシンキング入門

思考を解き放つ学びの力

思考プロセスは? これまでの講座を振り返る中で、問いを設定し主張を展開する際には、結論とその根拠を明確にし、その根拠に至る思考プロセス—どのような考え方を経たのか—を言語化して、自分の頭の中を可視化することの重要性を再認識しました。 運用はどうすべき? 普段はテキストベースでのコミュニケーションを活用していますが、実際のITインフラエンジニアとしての業務においては、例えばお客様からデータベースのバックアップに関する要望があった場合、どのデータをいつ、どこに保管し、どんな手法で誰がどのようにメンテナンスするのかといった具体的な要素に分解し、お客様が気づいていない部分まで明確にする思考法として応用できると感じました。また、バックアップ範囲そのものについても疑問を持ちながら、先方との課題を詰めていくアプローチが有効だと思います。 論理はどう整える? 物事を考える際には、まず問いの形としてイシューを定義し、それを常に意識・共有する基本的な姿勢が大切です。また、自身の考えが偏らないよう、妥当性のチェックを怠らず、そのプロセスをアウトプットしてフィードバックを受けながら繰り返しトレーニングすることが必要だと実感しました。さらに、MECEやロジックツリー、ピラミッドストラクチャといった論理的思考を整理する手法は、使える場面で積極的に取り入れていきたいと思います。

クリティカルシンキング入門

課題解決の秘訣は「問いのブレ」防止

イシュー特定はなぜ重要? イシューの特定の重要性を改めて実感しました。それ以上に「問い」の方向性をブレないよう意識し続けることの重要性に気付かされました。課題を特定し、イシューを設定した後、実際に分析や議論に移る際、この「問い」がブレることが多々あります。気づけば最初に設定したイシューからずれた議論をしていることが何度もありましたので、改めて見直したいと思います。 データ分析で避けたいミスは? データ分析においては、「問い」の方向性がブレてしまい後で気づき、やり直しが発生することがしばしばです。数字に触れ始めると、「分析」に夢中になり、本来の目的を見失ってしまうことがよくあります。特に注意すべきは「やった気になってしまうこと」であり、過去の経験を通じてこれを痛感しました。この講座を通して学んだフレームワークを意識し、同じ失敗を繰り返さないようにしたいと思います。 言語化の効果とは? 「イシューを押さえ続けること」は「意識」するだけでは難しいため、言語化を必ず意識したいです。言語化することで、自分だけでなく、周りの方との認識統一にもつながります。これができると、自分が「問い」からずれていても、「誰かが気づき」修正してもらうことができます。自身の考えを客観的に見ることは重要ですが、完璧にはできません。常に第三者のヘルプも借りながら進めたいと思います。

データ・アナリティクス入門

目的明確!整理から始める本気の分析

比較はどんな意味? 「分析は比較」という考え方は、これまでさまざまな講座で耳にしていましたが、「比較する対象を見出す」という点については、あまり深く考えたことがありませんでした。そのため、今回の学びを通じて、まずは「どんな目的で分析を行うのか」や「ありたい姿」と現状のギャップを整理(言語化)することに意識を向け、分析のスタート地点としてしっかりと理解を深めたいと考えています。 現状整理はどう進む? 業務では、依頼主から提示される課題に対して、その課題=「在りたい姿」と「現状」の整理が不十分なまま、すぐにデータに取り掛かることが多くありました。そのためか、「こっちだったかも?」や「なんかズレてきている?」という不安にかられ、進めていた分析で手戻りが発生することも多々ありました。そこで、データに触れる前に、一度しっかりと整理してから進めるべきだと改めて感じています。 新規案件の見通しは? 今回、新規の案件にあたっては、以下の点について整理しながら進めていく予定です。まずは分析の目的を明確にし、ありたい姿を言語化します。次に、現状の把握と、現在手元にある指標の洗い出しを行い、ありたい姿とのギャップを埋めるために必要なデータを整理します。こうしたプロセスをメンバー間で共有し、認識を合わせながら進めることが、より効果的な分析につながると期待しています。

データ・アナリティクス入門

ナノ単科で開く知の扉

ライブ授業の意義は? ライブ授業では、これまで学んできた内容を復習しながら、分析のプロセスを再確認することができ、知識がよりしっかりと定着したと実感しました。 演習で何を再確認? 演習では、ストーリーを持って分析を進める方法や、仮説に対する検証方法、そして平均値だけでなくそのばらつきに着目する必要性について再確認できました。 グループの発見は? また、グループワークでは、他の受講生の多様な視点を通じて新たな気づきを得るとともに、自分自身の考えをさらに深めることができました。 学びを言葉にできますか? 改めて、学んだことを言語化し、自分事として捉えることが知識の定着に大変重要であると感じました。 経営分析の心得は? 会社の経営状況を分析する際は、自分なりの仮説を立て、ストーリーを意識しながら課題解決のステップを踏むことが必要だと再認識しました。 データ活用の極意は? また、データの活用においては、まずは既存のデータを基本とし、情報が不足する場合には自らデータを集めることを心がけ、アウトプットのイメージを持つことが大切だと学びました。 知識定着の秘訣は? 短期間で学んだ知識はすぐに忘れてしまいがちです。業務で実際に活用し、継続的にアウトプットするほか、書籍などでの学習を続けることで知識の定着を図りたいと思います。

データ・アナリティクス入門

多視点で挑む実験の力

A/Bテストは何が大事? A/Bテストの重要性を深く理解することができました。従来は、既存の手法でうまくいかなければ次の手法を試し、その結果を比較すればよいと考えていました。しかし、どちらか一方の仮説に固執することは、結果に対してあらかじめ決めつけるリスクにつながると実感しました。 仮説検証の新発見は? また、A/Bテストに沿った仮説検証を通して、仮説をより深く掘り下げるとともに、新たな着眼点を見つけやすいことにも気づきました。これにより、一方の仮説に偏ることなく、複数の視点から結果を検証する必要性を再認識しました。 言語化で何が整理できた? さらに、これまで問題解決に取り組む際、自然と「What、Where、Why、How」のステップで考えていたものの、言語化を通じて自分の思考が整理できたと感じます。特に、今回の学びから「Why」や「How」の視点が不足していることに気づき、A/Bテストを利用した検証プロセスを通して、データ分析を含めたより効果的な問題解決のアプローチを模索していきたいと考えました。 どう視野を広げる? 課題に取り組む中で、仮説や結果について決めつけがちな自分に気づくことができたため、今後はさまざまな観点から視野を広く持ち、仮説の立て方や分析方法を多角的に見直していく努力を続けたいと思います。

データ・アナリティクス入門

仮説思考で学びを実践、諦めない心の重要性

仮説思考で成果を出すには? 仮説思考の鍛え方について体系的に学ぶことができ、非常に勉強になりました。毎回同じような学びであっても、体系的に言語化することで再現性が高まるため、自分で実践するにも他の人にアウトプットするにも非常に参考になります。 諦めない姿勢の重要性を再確認 仮説思考の鍛え方を通じて、「諦めず・熱意を持って・仮説を考え続ける」ことの重要性を改めて感じました。理解するだけではなく、それを実際に実践し、成果に結びつけることは非常に難しいです。そのため、「諦めない」ことがもっとも大切であると過去を振り返って改めて感じます。 継続的なデータ分析の意義とは? 経営データのデータ分析については、じっくりと分析する機会はあるものの、継続的には行っていません。課題は次々に発生するため、つい短絡的に結論を出してしまいがちです。これからはしっかりと時間を確保し、仮説検証を繰り返し行って問題解決の精度を高めていきたいと思います。 タスク整理と学びのルーチン化 まずは自分のタスクを改めて整理し、優先順位の低いものは権限移譲するか、削減して時間的余裕を生み出します(9月中に実施します)。また、毎週土曜日は極力「学びと実践」の時間とし、仮説検証を毎週のルーティンとして実践していきたいと考えています(今週から開始します)。

データ・アナリティクス入門

データ分析で変わる意思決定の未来

データ分析の意義とは? データ分析をビジネスに活用することの本質を理解し、考え方や手法を再設計して、自分のものにしたいと感じました。データ分析で課題を解決するとは、「勘と経験に頼る意思決定の方法を、データ分析を用いた合理的な意思決定へと改めること」を指しています。そのために必要なことを次のように整理しました。 シナリオ設計のコツは? まず、ビジネスに貢献するシナリオを描くことが重要です。そして、データを基にした意思決定プロセスを設計し、解消したい問題と解決する課題を言語化します。さらには、意思決定のプロセスを形式知として明文化することが必要です。 問題点は何か? 具体的な問題としては目標未達があり、その課題として購入増加、キャンセル回避、Webサイト離脱の回避、および集客増加といった点が挙げられます。これらの課題を「意思決定プロセス」に深く掘り下げていくことが今後の大きな課題と考えています。 今後の展望は? 今後の6週間では、問題と課題のさらなる言語化を進めていきたいと思っています。また、意思決定プロセスの6種類のうち、特にマーケティング型の「仮説試行型」と、経営者の思考バイアスを低減させるための経営者判断型について、さらに学びたいと考えています。そして、意思決定プロセスの形式知化を設計していく計画です。

デザイン思考入門

共感で紡ぐ課題解決の瞬間

どうやって本質を見抜く? 業務でデータ活用を推進する中、ユーザーの困りごとをヒアリングする機会がありました。慣れ親しんだ業務に没頭していると、ユーザー自身が困りごとに気づいていない場合があるため、共感をもって話を聞くことで本質的な課題を浮き彫りにすることができました。 なぜ議論は広がる? 共感を通じて相手が話しやすくなると、本来の課題を見出すことができる一方で、深く話を聞けば聞くほどさまざまな課題が表面化し、議論が広がりすぎることもありました。この経験から、目的を常に明確にしながら、ユーザーの「困りごと」を丁寧に整理していくことの重要性を痛感しました。単に話を聞くだけでなく、どこに本当に困っているのかを正しく理解し、課題を構造的にまとめるスキルが求められると感じています。 今後の対策は何? 今後は、共感と整理の両輪を意識し、言葉を丁寧に整えることで、相手の気づきを引き出し、より良い解決につなげたいと思います。 何を学び実践? 今日の学びは、「共感」と「整理」のバランスが重要であるということです。相手の話に耳を傾け信頼関係を築くと同時に、目的を見失わずに情報を整理する視点を持つことで、ユーザーの困りごとを深く理解し、言語化および構造化する力をさらに磨いていきたいと考えています。

データ・アナリティクス入門

仮説とデータで磨く業務分析の極意

仮説で何を探る? 仮説を立てることは、原因を特定しやすくするための大切なプロセスです。複数の仮説を用意することや、それぞれに網羅性をもたせることで、様々な切り口から問題にアプローチできます。仮説を設定した後は、目的に沿ったデータ収集が必要となり、比較用のデータや反論を排除するための情報をまとめることが求められます。業務における仮説は、ある論点や不明点に対する暫定的な答えとして機能し、問題解決や結論導出のための道筋となります。 直感は信頼できる? 私自身は、予実管理の分析依頼に対して即座にデータに手をつけ、結論を出すスタイルで業務を進めています。しかし、今回の学びを通して、直感だけに頼った分析では非効率なプロセスになりがちであると感じました。それに加えて、分析の過程を言語化していないため、チーム内での情報共有が十分に行われていない点も課題として浮かび上がりました。 効率改善の方法は? 今後は、仮説を立てることで分析の焦点を明確にし、必要なデータの収集方法を検討することで全体の効率を高めたいと考えています。また、業務プロセスをエクセルなどに落とし込み、仮説からデータ収集までの流れを標準化する取り組みを進め、関心や問題意識を共有することで説得力のある分析を目指していきたいと思います。

データ・アナリティクス入門

分析で得た洞察を行動に変える方法

売上予測の計画をどう立てる? 売上予測においては、過去の事例や他社、海外の事例と比較しながら計画を立てることが重要です。実績が更新されるたびにその計画との比較を通じて事業の進捗を評価し、改善策を議論しています。このことから、「分析は比較なり」という定義はやはり真理だと感じています。また、扱うデータの理解を深め、その知見をステークホルダーと共有するためには、アウトプットの整理と見せ方を適切に選ぶ必要があります。 分析計画表はどのように工夫する? 分析を進める際には、毎回分析計画表を記載し、目的に合わせた分析手法を選択して言語化した上で作業を進めています。しかし、どのデータをどのように加工して用いるかにはあまり触れていないことが多いと感じました。そのため、テンプレートを見直し、自分以外の人がその分析の思考プロセスを理解しやすくするよう工夫が必要です。 新たなデータ分析のアプローチは? 具体的には、現在のテンプレートでは実際に分析に用いたものしか記載されておらず、選択可能なデータの種類とその選択理由、分析手法の採用理由を明確化するような構成に変更する予定です。新たなデータを分析する場合、そのデータの特性や限界を適切に確認し、分析結果とともに共有することが重要だと考えています。

クリティカルシンキング入門

明確な数字が導く説得の道

売上目標は具体的? 売上目標を具体的な数値で設定し、グラフを活用することで、経営判断やプレゼンの質を向上させる手法が印象的でした。まず、漠然とした課題ではなく、明確なイシューを特定することが重要です。イシューが明確になったら、データや異なる切り口を用い、ピラミッドストラクチャーで論理を整理するのが効果的です。また、イシューは「問い」として常に意識し、考えているうちに方向性がブレないようにメモを残すことが推奨されます。 数字と論理の関係は? 具体的には、「売上目標〇〇億円」と数字で目標を定め、日時、週次、四半期、年次といった各種のグラフを目的に合わせて作成する手法が有効です。また、ピラミッドストラクチャーを意識して、①イシューの特定、②論理の枠組みの構築、③適切な根拠で支えるというプロセスを繰り返すことで、より説得力のある資料づくりが進むと感じました。 施策の意義は伝わる? 今回の学びは、実際の融資交渉や新規事業の場面で資料作りに役立つとともに、社内で売上目標を設定する際にも、「なぜこの施策が必要なのか」が伝わる具体例を示すことの重要性を実感させました。今後は、チーム内でこれらの考え方を共通言語として活用し、より具体的でわかりやすい議論を進めていきたいと思います。

クリティカルシンキング入門

受講生が実感!伝わる資料作りの極意

どのグラフが効果的? 同じデータを用いる場合でも、伝えたい内容に応じて、どのグラフや表を選ぶと効果的に情報が伝わるのかを明確に言語化する重要性を学びました。たとえば、資料全体の流れを意識しながら、タイトルやナビゲーション文章の配置とグラフの順序を工夫することで、よりわかりやすい資料作りが可能になると実感しました。 デザイン要素は意識? また、資料作成時に用いるフォントや色といったデザイン要素について、これまで感覚的に扱っていた部分がありましたが、基本的なセオリーを踏まえることで、情報が一般的に伝わりやすい形に整えることができると理解できた点も大きな学びでした。 相手をどう想定? さらに、社内文書においても、読者や相手を想定する視点が非常に重要であることを改めて認識しました。相手に配慮した文章構成が、伝える力を大幅に向上させるのだと感じています。 根拠はどう示す? 今後は、定量的でファクトに基づいた情報を、適切なグラフや表と組み合わせながら、丁寧に伝える努力を続けます。直感だけに頼らず、しっかりと根拠となるデータや事実を探求し、事前アジェンダの作成やテキストのみでの情報伝達においても、フォントや色などの使い方を一層工夫していく所存です。
AIコーチング導線バナー

「データ × 言語」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right