マーケティング入門

自分変わる瞬間がここにある

マーケティングの本質は? マーケティングには一つの決まった定義があるわけではなく、概念自体が多様です。しかし、存在するフレームワークを活用し、ターゲットにどのような価値を伝えるかを明確にすることが重要です。自社商品の魅力をしっかりと顧客に伝えることで、顧客がその魅力に引き込まれることが目指されています。 ターゲットは合っていますか? また、ターゲットと商品展開(つまり提案する価値)が整合しているかを慎重に考える必要があります。例えば、20代や30代の女性をターゲットにしている場合、新商品や広告、プロモーションが本当にその層に響く内容となっているかを見直し、市場調査や暮らし方の分析を通して顧客目線に立った提案が求められます。 共有認識はありますか? そのため、事業部のコンセプトを再確認し、①ターゲットと②提案する価値という軸を全社員で共有し、明確な方向性を言語化することが必要です。こうした共通認識をもとに、顧客に求められる商品や企業としてのプロモーション戦略をマーケティング理論に基づいて提案していくべきです。 データ活用はどうする? さらに、ターゲット顧客に価値を伝える際には、どのようなデータを活用すれば効果的か、またどのフレームワークが有効かという判断に迷いが生じることも現状の課題です。そこで、良い経験や失敗経験を他のメンバーと共有し、議題として議論することで、より効果的なマーケティング戦略の構築を目指したいと考えています。

データ・アナリティクス入門

データ比較で気づいた発見と反省

適切な比較対象とは? 「分析の本質は比較」という言葉が最も印象的でした。「Apple to Apple」と「Apple to Orange」という表現が動画で紹介され、過去に何となく使っていたことを思い出しました。しかし、改めて説明を聞くと、適切な比較対象を示す意義があることに気付かされました。 分析のプロセスを見直す 分析を始める前にまず目的を確認し、仮説を立て、そのためにどのデータを比較すべきかを考えるプロセスが重要であることを感じました。今まではこのプロセスを特に意識していなかったことに反省しました。ライブ授業のグループワークでは、人それぞれの多様な見方を感じ取ることができましたが、積極的に発言するメンバーがいる中で、自分がなかなか発言できなかったことを振り返りました。動画やライブ授業のまとめにあった「言語化・教訓化・自分化」が自分にはまだ足りていないと実感し、これからの取り組みに生かしていこうと思いました。 業務へのデータ分析活用 現在の業務でデータ分析を主に行うことは少ないですが、普段接するデータについても何を比較すべきかを考え、その視点を持って関わっていこうと思います。データを見る際には、まず目的を明確にし、何をアウトプットしたいのか、何のための分析なのかをしっかり考えて業務に取り組むことが大切です。データ比較を通じて新たな気づきを得るために、データに向かう際の意識を高めていきます。日々の業務でこれを実践していこうと考えています。

データ・アナリティクス入門

グラフと数値に学ぶ新視点

グラフ選定はどう決める? まず、グラフ選定の際の仮説の重要性を実感しました。これまで、複数のグラフを何となく並べ、どのグラフが伝えたい内容をより効果的に示すかという観点で選んでいました。しかし、自分が何を比較し何を見たいかを明確に設定した上でグラフを選ぶことの大切さに気付くことができました。 標準偏差、どう理解する? 次に、標準偏差への理解が深まりました。過去に数値として用いた経験はあったものの、どのような場面でどのように解釈すべきか、また算出方法や示す内容について十分に言語化や深堀りができていなかったと感じています。これを機に、もう少し詳しく学びたいと思います。 加重平均、どう捉える? また、ちょうどこの時期に話題となっている最低賃金改定を通して、「加重平均」という言葉の意味が理解できたのも印象的でした。普段から苦手な「割合」や「率」の変化については、今後データを取り扱う際により慎重に見極めていこうと思います。 平均と分散の見方は? さらに、平均値はこれまでピックアップすることが多かったのですが、数字のばらつきについては、存在を漠然と理解していたものの、どのように処理すればよいのか、そこからどんな示唆が得られるのかを考えてこなかったと実感しました。今後は、各種スコアや遷移率を分析する際、平均値だけでなく分散から見える傾向も踏まえ、案件や地域ごとの特性をより多角的に捉えられるよう、データの切り口や分析方法の幅を広げていきたいと思います。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

マーケティング入門

軸で切り拓く未来の可能性

どんな軸が効果的? ある企業の事例から、商品の仕様を変えることなく新たなターゲットに訴求する際、商品の特徴の中から二つの軸を特定し、ポジショニングマップを検討することが、他社との差別化や自社の強みにつながると学びました。 商品名の魅力は何? また、商品名が持つユーモアや分かりやすさも、商品やサービスの開発において非常に重要であり、場合によっては改名を検討することでターゲットの幅が広がり、売上向上の効果が期待できるという点も印象に残りました。 イベント名はどう響く? 毎年開催している同様のイベントにおいて、イベントタイトルやキャンペーン名称が結果や反響に大きな影響を与えていることを体感しており、企業として二つの軸を十分に考慮し、優位性と顧客からの共感を得られるポジショニングマップを基に企画を打ち出していく必要性を感じました。 顧客の興味は何? さらに、自社が伝えたい魅力や強みだけにこだわるのではなく、顧客が何に興味を持つかという視点を持つことが重要であると考えています。 STPをどう生かす? 加えて、施策ごとにSTP(セグメンテーション、ターゲティング、ポジショニング)を丁寧に実施すること、そして現有のデータだけに頼らず、フレームワークを活用して新しい市場の可能性を探る必要性も強く感じました。また、ターゲティングの評価基準を言語化しながらターゲット選定を行うことによって、運営の質を向上させていきたいと考えています。

クリティカルシンキング入門

質の高い問いで未来を拓く

本質の問いは? 講座全体の振り返りを通じて、学んだ内容を整理する大切さを実感しました。特に、本質的な課題解決へとつながる質の高い問いを立てる力を身に着けたいと強く感じています。そのため、社会情勢や組織が置かれている立場の理解、情報収集、そして教養を高めることなど、自分の思考基盤を強化し、想像力を働かせることが必要であると考えています。今後も講座で学んだ知識を意識的に活用していきたいと思います。 学びはどう深める? また、知識の定着を図るために、インプットした内容を実践で使いアウトプットし、他者からのフィードバックを受けた上で振り返りを行うサイクルを継続していきたいと思います。この循環をしっかりと回すことで、学びをより深めることができると感じています。 事業計画はどう進む? 来年度の具体的な事業計画の策定にあたっては、これまでの事業実績と効果の検証をもとにデータ収集を行います。まずは、核心となる「問い」を設定し、データの分析を通じて、ピラミッドストラクチャーを活用した具体的な計画を立てる予定です。この過程では、思考プロセスを言語化しておくことも重視しています。 承認資料の工夫は? さらに、策定した事業計画を内部で承認してもらうために、「目的が明確であるか」「読み手の立場に立っているか」「内容がしっかりしているか」「読みたく、理解したくなる工夫がされているか」といった視点から、スライドや説明資料の作成に努めていきます。

戦略思考入門

戦略思考で紡ぐ新たな挑戦

全体戦略をどう考える? 戦略的思考とは、論理的なシナリオを構築することであると捉えています。まずは全体を俯瞰し、外部環境を広く観察する中で、市場、競合、顧客と自分自身を比較して、何を実現しようとしているのか、大きな流れを把握できました。その中で、どの領域に注力し、どのように差別化を図ることで最短・最速で目標に到達するかが明確になりました。一方、各種フレームワークを用いてシナリオを組み立てる際に、それぞれの整合性をとる必要があるため、習熟するまでには時間がかかると感じています。 自分の立ち位置は? また、業界や企業を自分自身のものとして捉え、言語化することで、フレームワークを自分のツールにしていきたいと考えています。 新規企画の挑戦は? 今回の学びの経験を活かし、医療・ヘルスケア領域での新規プロジェクト企画に挑戦したいと思います。エネルギー領域の技術調査では多くのデータが蓄積されている一方で、新たなプロジェクト領域については未知の部分が多く、先人の知見を参考にしながらフレームワークを活用し、抜け漏れのない計画を進める所存です。 実行計画はどう進む? 具体的なスケジュールとしては、まず部下とフレームワークの知識を共有して調整を図り(~5月末)、その後6月上旬に新規プロジェクトの大枠となるシナリオを作成します。さらに、6月下旬には不足している情報をヒアリングや調査で補い、7月上旬までに事業計画書に反映させる予定です。

データ・アナリティクス入門

視野を広げる学び方の発見

学びの振り返りはどのように? これまでを振り返り、学びを得たことを自分の言葉で再度まとめることができる場があり、復習に繋がりました。また、リアルタイムでの講義には参加できなかったものの、自分一人で考えるだけでは視野が狭くなる可能性があるため、参加できなかったことが悔やまれます。 分析のストーリーが重要? その中でも特に印象的だったのは、スライドで示された「やみくもに分析しない。ストーリーが大事!」という点です。傾向をつかみ、特に見るべき箇所を明らかにし、網羅的にデータを収集して分析することの重要性が強調されていました。これにより、言語化・教訓化・自分化が進められると感じました。 自己研鑽と業務改善のステップは? 学習方法については、自身の癖を認識しているため、現在バイアスに押し負けないように自己研鑽に励みたいと思います。特に、問題解決が業務の中心であるため、そのステップに基づいて業務を進めたいと考えています。また、過去の経験則で決め付けることが多い内部問題の洗い出しと改善にもつなげていきたいです。 業務指標の整理はどうする? さらに、毎月提供される業務指標が様式も保管場所もその時期もまばらであり、単体に存在している現状があります。これを単体で取り扱うのではなく、日々起きる問題に備えてまとめておくべきだと感じました。目的に合わせて必要なデータをいつでも引き出せるように整備しておきたいと思います。

クリティカルシンキング入門

グラフと装飾の新発想で資料改善!

グラフ選びの理由は? グラフの選び方について、これまでは感覚的に選んでいましたが、今回の講座で得た知識との差異はありませんでした。しかし、具体的に「このような場合はこのグラフを選ぶ」という言語化ができていなかったため、今後は理由を持ってグラフを選びたいと考えています。 文字装飾の見直しは? 文字装飾の選び方についても学びがありました。装飾は「付け足す」のではなく、「削る」ことが重要だということです。学生時代に、赤字や太字、下線で強調した際に「やりすぎだ」と言われた経験もあり気を付けていましたが、特にタイトル位置では装飾が不要であるという点は新たな学びでした。 報告資料の工夫は? 分析データの報告時にこれらの知識を活用したいと考えています。普段は分析データに触れない他部署の人に報告資料を送ることがありますが、ここで適切でないグラフが使われていたり、全体の構成が不明確だったりすると、受け取る側が混乱してしまいます。そのため、「何を伝えたいか」に焦点を当てて資料を作成していきたいと思います。 発信方法の確認は? 具体的には、次のような行動を心掛けたいです。まず、伝えたい目的やメッセージを明確にし、その次に、どの順番で何を並べるかスライド全体の構成を考えます。そして、必要な文や適切なグラフを配置し、補足や強調は最低限に留めます。最後に、読み返しながら、伝えたいことが相手に無理なく伝わるかを確認します。

データ・アナリティクス入門

目的で変わるデータ分析の極意

目的は何だった? 今週の学習を通じて、データ分析は単に数字を集める作業ではなく、まず「何を目的に、どの項目と何を比較するのか」を考えることが重要だと強く実感しました。これまでの私は、手元にあるデータをただ集計し、そこから何か分かるのではないかと考えることが多かったのですが、その結果、正しい判断に至らない場合があると気づかされました。 本質は見えてる? 特に印象に残ったのは、分かりやすいデータだけに頼る生存者バイアスの考え方です。自分自身も、分析しやすいデータに引っ張られがちであったため、「本来見るべきものは何か」という視点を持つ必要があると痛感しました。 課題は何だろう? これまでは、商業部門や関係部署からの依頼で内容を十分に整理せずに作業を進めることがあり、その結果、意図とのズレや手戻りが生じることもありました。今回学んだ「目的と比較を意識したデータ分析」は、現在担当している業務にそのまま活かせると感じ、作業開始前の進め方を見直す良い機会となりました。 対策はどうする? 今後は、依頼を受けた段階で「何を明らかにしたいのか」「どの期間や条件と比較するのか」を必ず確認し、目的とゴールを整理してから作業に取り組むようにしていきます。一方で、実務では依頼元自身が目的を明確に言語化・整理できていないケースも多いと感じ、この場合、どこまでこちら側が踏み込むべきかという課題も感じました。

データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

クリティカルシンキング入門

問いから始まる新たな発見への旅

問いの必要性は? 問いを立てることの重要性を再認識しました。私の仕事を振り返ると、言語化して問いを立てることが不足していることに気付きました。問いの立て方によって考える方向性が大きく変わるのです。具体的に何が問題で解決すべきなのかを短期的な視点で捉えることが、効果的な問いやイシューにつながると感じました。ただし、長期的な視点での問いも重要ではありますが、それが本質論になると、足元の問題やミッションとずれてしまうこともあると実感しています。 報告方法はどう工夫する? 顧客に調査結果を報告する際、単なるデータの羅列では不十分であることを学びました。事実だけ述べると、自分が何を伝えたいのかが曖昧になり、お客様にとっても「だから何なのか」という疑問を生んでしまう可能性があります。お客様の業績や現状を考慮に入れて、調査結果から得られる価値ある情報を明確にし、具体的な問いを立てて伝える必要があります。 企業報告のポイントは? 企業ごとの報告内容を作成する際は、前回調査からの変化や企業の関心の高い論点を中心に状況をまとめます。これらの背景要因を分析し、状況を正確に把握した上で、具体的な問いを立てることが重要です。問いに対する回答を作成するためには、必要なデータベースを参照することも大切です。最終的には、プレゼンテーションに向けてストーリーを展開し、効果的に伝わるように文章を工夫しています。
AIコーチング導線バナー

「データ × 言語」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right