クリティカルシンキング入門

日々の問いで紡ぐ成長ストーリー

知識をどう実務に? WEEK6までを通して、問いから始める、分解、視覚化、イシューなどの各種フレームワークを学びました。しかし、単に知識として習得しただけでは、実務に体系的に落とし込むのは難しく感じました。アウトプットの質が向上した実感はありますが、日々の復習と繰り返し学習が欠かせないと再認識しています。 数字だけで戦える? マーケティング施策を検討する際、これまで一面的な数値や事象だけに頼っていた部分を見直す必要があると感じました。今後は常に問いを持ち、具体的な根拠を示しながら、より質の高いマーケティング戦略を構築していきたいと考えています。また、組織としての課題形成にも取り組む中で、抽象的なビックワードを使わず、具体性を重視する方針です。 合格の秘訣は? 受験を経てMBAに合格できたことは大きな成果です。今後は、クリティカルシンキングで学んだ知見を活かし、さらに専門的な知識を深めていく所存です。特にファイナンスや企業会計の基礎を入学前にしっかり学び、推薦図書を最低二冊は読破する計画です。そのためにも、日々の業務スケジュールを見直し、復習と繰り返しの学習を習慣化していきたいと思います。

クリティカルシンキング入門

思考の前提を見直し、課題解決力を強化

前提と過程を考える? 今まで、結論を出すことばかりに注力し、物事の前提や順序を立てて考えることを疎かにしていたことに気づきました。今後は、前提やプロセスの重要性を意識し、ビジネスだけでなく日常生活においても、その場しのぎの考え方を改め、しっかりと順序立てて考えることを心がけていきたいと思います。 解決策をどう見出す? クライアントの問題解決においては、目の前にある問題や思いつきの問題を取り上げてしまう傾向がありました。しかし、問題の前提を見極め、どのような解決策があるのか、改善後の状態はどうあるべきかを順序立てて考え、まとめ、結論を出すことが大切です。このプロセスが十分にできていなかったと反省しています。今後は、業務改善支援における問題の整理に反映していきます。 最適な施策は何? まずは、問題の前提を整理し、その前提ごとにどのような施策が考えられるかを順序立てて検討していくことから始めたいと思います。ただ「どうなったらよいか」だけに目を向けるのではなく、現在何が問題で何が不足しているのかを併せて考えていくことに注力します。前提や問題の洗い出しを丁寧に行うことから始めたいと思っています。

クリティカルシンキング入門

多角的視点で課題発見!MECE活用術

項目分けの意味は? 意図的に項目を分けることで、問題が見つけやすくなると気付きました。特に、言葉の定義を明確にすること(例えば「子供」とは何を指すのか)が重要です。視点が多ければ多いほど、問題の発見が容易になり、解決策も増えてきます。しかしながら、日々の業務の慣れから、こうしたことを見落としてしまうと感じています。 経験に頼るリスクは? これまで、課題に対する解決策が自分の経験に偏っていることが多かったため、常に批判的思考を忘れず、「他に手はないだろうか?」と自問し続けたいと思っています。課題を特定する際も、経験に依存しがちなため、MECE(Mutually Exclusive, Collectively Exhaustive)を用いて視点を増やすことを意識しています。 数値分析の新発見は? PL(損益計算書)やBS(貸借対照表)を作成および分析する際には、経験に頼るだけでなく、MECEを用いて分解を行い、新たな洞察を得たいと思っています。また、新規施策を行う際にはターゲットの特定においてMECE分解と数値分析を活用し、数値的インパクトの大きい施策を立案し、実行に移していきたいです。

データ・アナリティクス入門

仮説思考を活用したデジタル化挑戦記

仮説思考の基本は? 仮説思考は、ビジネスのスピードと精度を向上させ、説得力を伴った意思決定を行うために重要です。このプロセスを実践するには、まず複数の仮説を立て、網羅性を持たせることが必要です。仮説を立てる際の重要なツールとして、フレームワークを活用することが推奨されます。仮説には、結論の仮説と問題解決の仮説があり、特に問題解決の仮説では、what、where、why、howの順に考えることが基本です。 デジタル化の進め方は? 私の仕事の一環として、保険手続きを紙からデジタルへと移行させる方法を模索していますが、現状では多くの既存データが十分に活用されていないと感じています。そのため、仮説思考を取り入れながら、デジタル化率を向上させるための施策を複数考えたいと思います。 実行策の視点は? まず、手続きの種類ごとにデジタル化率を向上させる余地があるか、既存データを基に複数の網羅的な仮説を立てます(where)。次に、デジタル化が進んでいない理由を明らかにするため、幾つかの原因を挙げます(why)。そして、実現可能性やコストを考慮しながら、具体的な実行策を練ります(how)。

データ・アナリティクス入門

データが効く!新たな分析視点を実践

代表値はどう役立つ? 今まで、分析に代表値をほとんど使ったことがなかったと反省しました。業務で特に活用できそうだと思ったのは、加重平均と中央値です。 加重平均でどう評価? まず、加重平均を販売施策の効果分析に利用しようと思います。施策ごとに異なる予算をかけているため、予算に応じて効果を加重平均で評価します。これにより、施策の効率性を測り来年度の販売施策立案に活かせます。具体的には、販売施策の実績を「かかった費用」「成約金額合計」「販売台数」「粗利益額」「費用対効果」などの項目でまとめておきます。そして、年度内に加重平均で評価し、費用対効果の良かった施策とその要因を明らかにします。 中央値はどう活かす? 次に、中央値をSNSマーケティングの効果測定に役立てます。たとえば、Instagramにおける直近一年のインプレッション、リアクション、アクティビティをまとめ、中央値を算出します。これにより、通常の反応水準を把握し、外れ値に該当する投稿を見つけて分析し、今後の投稿戦略に活用します。具体的には、外れ値を見つけ、増やしていくべき投稿内容や逆に今後は減らしていくべき投稿の傾向を把握します。

データ・アナリティクス入門

データと仮説で磨く解決力

解決策はどう考える? 問題解決のためには、まず原因を明らかにするためのプロセスに分解し、複数の選択肢を立案してから根拠に基づいて絞り込むアプローチが有効です。また、施策の効果を比較しながら仮説検証を繰り返すことで、より的確な解決策へと精度を高めることができます。さらに、データ分析によって問題解決の精度を確実に向上させるため、仮説に基づいたアプローチと新たなデータ収集を組み合わせるという手法も取り入れ、日々その思考を鍛えていくことが大切だと感じました。 仮説検証は何が鍵? 一方、問題解決プロジェクトにおいては実現性を重視するあまり、手軽に実行できる解決策が優先されがちな点に疑問を抱いていました。しかし、仮説検証を通じて得られる新たなデータもまた価値があると認識しています。そのため、事前にどのようなデータ収集や分析が可能かを議論し、リードすることが重要だと考えます。メンバーには、問題解決のステップ全体を共有し、現在の議論がどの段階に位置しているのかを意識してもらうことで、いきなり解決策の立案に飛び込むのではなく、新たなデータを用いた仮説検証を積極的に取り入れていくよう促していきたいと思います。

クリティカルシンキング入門

思考のクセを見抜く!本質追求の秘訣

どうして客観視できる? どんな時でも思考にはバイアスがかかるというのは、大きな気づきでした。常に本質を捉える意識を持ち、自分の思考がどれだけ客観的であるかを、視点・視野・視座の観点から俯瞰して確認することが重要だと感じました。そして、自分の頭の中だけに留めず、他者とのコミュニケーションを通じて客観性を保ちながら、本質を追求することを心掛けたいと思いました。 なぜ成果が高まる? この考え方は、様々な場面で役立ちます。例えば、ある施策を企画した際、最初に目的や期待される効果を設定しますが、その後も実行段階で本質的な目的に沿っているか、新しい方法がより効果的ではないか、また他者の意見はどうかといった問いかけを続けることで、成果物の質が向上し、自分の考え方の訓練にもなると感じました。 どうやって再考する? 自分の取り組む仕事や関わる仕事についても、クリティカルシンキングを用いて、本質的にやるべきことが効果的に行われているか常に考えたいと思います。もし改善や廃止の必要性があると感じた場合、他の人の意見を聞いてみる。それを、たとえ時間がなくても一度立ち止まって考える習慣を持ちたいです。

クリティカルシンキング入門

データ分解で見える!思考の旅路

どうやって切り分ける? 物事を分割して考える際、結果が見えないこともありますが、それ自体が「何もわからない」という結果を示しているため、意義はあります。その上で、次の切り口を探ることが重要です。初めの段階では大きく切り分けていく方が良いですが、最初から最適な切り口を見つけることは難しいでしょう。そのため、見つけた切り口からさらに広い視点の切り口を探る往復作業が効果的です。 情報はどう加工する? 情報はまず収集し、それを目的に応じて変形させることが重要です。そして、それに基づき次に進むべき方向を考えます。例えば、自社と他社の比較や、今年度の新人の離職や休職の状況を把握し、施策についての成果を確認します。研修後の全体的な理解度や企画時の要因分析、アンケートの結果整理なども同様に重要なプロセスです。 研修後はどう比較する? 特に今年度の新人の離職・休職については、理由別にデータを収集し、昨年度と比べて施策の効果を評価します。また、研修後の理解度把握では、各個人の研修中のデータを整理し、現場配属後の成果と結びつけ、成果が出ている人とそうでない人との違いを比較することが求められます。

データ・アナリティクス入門

あなたを動かす学びの4視点

本質問題、どう捉える? 今回の学習では、問題解決のための4つの視点――What、Where、Why、How――を意識する重要性を学びました。特に、解決すべき本質的な問題(What)を明確にし、理想と現状のギャップを把握することが、メンバー間の認識のズレを防ぐ上で非常に重要だと感じました。 サービス提供は課題? また、長期的な利益向上のためには生徒数の増加が求められる一方、現状のサービス提供体制ではスタッフへの負荷増大や顧客満足度の低下といったリスクも伴います。これに対し、各講師が対応可能なクラス数や新人講師の育成にかかる期間・コスト、顧客満足度に影響を与える要素など、具体的な定量データを基に現状を整理し、対策の優先順位を明確にすることが必要だと実感しました。 日常業務、どう対処? さらに、日常業務においても、状況把握や効果検証、施策の試算などのプロセスにおいてWhat、Where、Why、Howの視点を取り入れることが重要です。分析開始前にロジックツリーなどを用いて問題の全体像を整理し、関係するメンバーと認識を共有することで、より精度の高い対応策を講じることができると感じました。

マーケティング入門

偏りからの脱却:広がる学びの世界

マーケ視点は偏ってる? 6週間の学びを振り返る中で、自分のマーケティング視点が偏っていたことに気づきました。従来、単に「いいものを作ればよい」という考えにとらわれていた自分が、無意識のうちにそのような固定観念に陥っていたことを実感できました。また、グループワークで出会った仲間たちとの時間に改めて感謝の念を抱き、マーケティング思考の幅を広げる重要性を感じています。 情緒価値を考える? Q1に関連して、今後は機能的価値だけでなく、自社商品やサービスが提供する情緒的な価値についても、さまざまな視点から考えてみたいと思います。どのような直接的および間接的な価値を提供できるのか、また利用者がどのような感情を抱くのかを洗い出し、良い面や課題点を明確にして施策に反映させることが目標です。 課題解決の道は? さらに、課題解決に向けた施策を継続的に立案し、取り組んでいく状況にあります。まずは、Q2に記載した内容を実践しながら改善に努めたいと考えています。また、6月から新しいプロジェクトに参画する予定であるため、WEEK2~5までに学んだことを積極的に実践し、今後の成長につなげていきたいと思います。

データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

データ・アナリティクス入門

データ分析で見えた改善のヒント

目的と比較の重要性を認識 実務では無意識で実践していましたが、分析においては目的と比較が重要であることを再認識しました。「何を伝えたいのか」によってグラフの作成方法を考える、という視点は今後意識していきたいです。また、分析において要素に分解することは大切ですが、目的が明確でないと細かく分解すること自体が目的化してしまう可能性があるため、注意したいところです。 分析結果を施策にどう活かす? 弊社サービスの利用率や更新率を高める施策を考える上で、ユーザーデータの分析における学びを活用したいと思います。具体的には、「利用率を高める」ことと「更新率を高める」ことという目的に分けて、ユーザーの利用データや解約時アンケートなどの各種データから必要な項目を抽出し、分析します。 チームとの効果的な議論をどう行う? 毎週のチームメンバーとのミーティングでは、学んだことをメンバーにアウトプットし、チーム全体の視座を揃えるように努めます。特に、「利用率を高める」「更新率を高める」ためのデータ分析をメンバーと協力して行い、効果的な施策を導き出せるよう、有意義なディスカッションを重ねていきたいです。

「施策」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right