データ・アナリティクス入門

新たな指標で描くデータの未来

どうしてデータ加工が必要? これまで、データ分析では単純平均や標準偏差、棒グラフ、散布図など、一般的な方法を用いてきました。しかし、集めたデータを適切に加工しなければ、想定していた答えや正確な結果を得るのは難しいと学びました。今後は、必要に応じて加重平均や中央値などをより効果的に活用していきたいと考えています。 どの指標が本当に有効? また、単純平均や標準偏差だけに頼ると、データの見え方が一面的になりかねません。そのため、加重平均や幾何平均、中央値といった指標を取り入れ、どの指標がデータを最も適切に表しているのかを検証しながら分析を進めたいと思います。これまでとは異なる視点からデータが見えることを期待しています。 なぜ仮説検証が重要? 特に、私の業務は問題解決のための分析とあるべき姿の考察の両面に関わるため、その時々で適切な仮説を立て、データの表し方を工夫することが求められます。状況に応じた分析手法を積極的に取り入れることで、より正確なデータ分析に繋げていきたいと思います。

戦略思考入門

原体験が教える戦略の極意

どんな原体験が影響? 担当講師の原体験で語られた体育会系の経験談は、非常に納得できるものでした。一定の段階ではその手法が通用していたものの、マネジメントの重要性が増すと、視座が十分に上がらないことに気づかされました。また、あえて伝える内容を絞ること自体が戦略の一つであるという考え方にも大いに学びました。 どの戦略が伝わる? 戦略の立案においては、重要な内容をすべて盛り込もうとするあまり、情報が多すぎて本来のメッセージがうまく伝わらないというジレンマに直面しました。実際、何度かの質疑応答を経なければ意図が十分に伝わらない場面もあり、シンプルすぎず複雑すぎないバランスがいかに重要かを実感しました。 なぜ考え直すの? さらに、戦略を立案する過程で、自身の考えをアウトプットし、言語化する習慣の大切さに気づきました。一度考えた言葉をそのまま発信するだけでなく、「なぜそうしたのか」「それは何を意味するのか」を見直すことで、シンプルかつ洗練された表現を目指すようになりました。

データ・アナリティクス入門

データ分析の新たな視点を学んで気づいたこと

新たに学んだ加重平均とは? 加重平均を新たに学びました。外れ値がある場合に平均値で表せないことは感覚的には理解していましたが、加重平均を用いて計算したことはありませんでした。また、成長率についても単純に年数分の成長を年数で割るものではないと知っていましたが、直感的にすぐに計算できる方法を知りませんでした。このため、幾何平均も新たに学びました。 学んだ方法の活用を考える 現在の業務では、前年比を用いており、今回学んだ方法を使用する場面はほとんどないと考えています(会社的に求められていない)。しかし、個人的な興味や研究として、各種費用の値上げ率を幾何平均で算出し、物価上昇率との相関を見てみたいと思います。 個人的な興味とデータ分析 会社としてのアウトプットは求められていませんが、個人的な興味として、学んだ手法を各種データに当てはめて試してみるつもりです。これにより、これらのデータ分析が本当に不要なのか、それとも必要なのに見落としているのかを検証してみたいと思います。

データ・アナリティクス入門

数字が導く明日の解決策

問題箇所はどこ? 問題個所の特定は、次のアクションプランを考える上で非常に重要です。数値に基づいて問題箇所を洗い出し、優先順位を明確にすることで、納得のいくアクションプランを策定できます。また、数字に紐づく具体的な行動も同時に把握することで、プロセス全体の見直しの基準が整います。 課題解決はどう進む? 課題解決は、問題をプロセスに落とし込みながら進めることが求められます。What、Where、Why、Howといった基本の枠組みに沿って対応することで、業務改善の手法の一つとして、DX化推進の取り組みも効果的に実施できるのではないでしょうか。 目的設定はどう? 目的の設定においては、まず問題や課題を洗い出し、その中から複数ある項目に対して優先度を付け、分析と順位付けを徹底します。その上で、アクションプランを策定することが求められます。さらに、UI/UXに関わる場合はA/Bテストを取り入れ、スタンダードなフレームワークに沿った進め方を実施することが重要です。

クリティカルシンキング入門

論理で拓く成長の道

なぜ系統分解する? 問題解決にあたっては、主観的な判断を極力排除し、各要素を系統的に分解する手法が重要であると学びました。MECEの考え方を参考に、まずはトレーニングを重ねながら、必要な要素を網羅的に整理する力を身につけたいと考えています。 どの角度で検証する? また、IT分野でのシステム設計や事後分析においては、目的や問題点を明確にし、多角的に分析する姿勢が求められると感じました。どの角度から、どのレベルまで検討するかを意識することで、より高い品質のアウトプットを実現できると実感しています。さらに、クリティカルシンキングの向上には継続的なトレーニングが不可欠であり、ビジネスシーンにおいても振り返りの時間を大切にすべきだと思いました。 自己評価はどう? 今後は、本コースで学んだ思考方法を活かし、過去の問題分析を振り返る中で、自分のアプローチが主観的になっていないか、また適切なレベルまで検証できたかを再評価し、次回以降のタスクに役立てていきたいと考えています。

データ・アナリティクス入門

分けて比べる実践の記録

手法の意図は何? 今回のデータ分析では、まず「分けて比べる」という手法を意識し、対象や基準を明確に設定して検証しています。データ分析の目的—つまり、何のために分析を行い、どのような成果を期待するのか—をはっきりさせた上で、ゴールや仮説、今後の取り組みイメージを具体的に描くよう努めています。また、目の前にあるデータのみを頼りにせず、生存者バイアスに十分注意しながら分析を進めています。 売上向上の秘訣は? 購入者の分析とパートナー企業の売上分析の双方について、各々の良い点と改善すべき点を明確に整理することで、パートナー企業全体の売上向上に寄与するマクロサポートへと繋げたいと考えています。さらに、サンプルデータや本講座を通してデータ分析の実践回数を積み重ねることで、これまでの経験に加え新たなプロジェクトに活かせる知識を身につけたいと思います。過去に他のプロジェクトで培った分析経験を再検証し、今後のプロジェクトに向けたデータ収集や分析手法の向上を図っていく所存です。

戦略思考入門

整理と分析で磨く戦略の本質

整理・分析の本質は? 差別化は、単に情報をかき集めてアイディアを出すだけではなく、綿密な整理と分析が必要であると以前は考えていたが、その整理や分析が表面的になりがちな点に気づかされた。 VRIOで価値を見極め? VRIO分析を活用する中で、まず、施策が顧客にとって実際に価値を生み出しているか、また他社にはない希少性があるかどうかを検討することが重要である。そして、競合が容易に模倣できるか、自社で持続的に実現可能かといった視点も忘れてはならない。特に、顧客が製品を使うことで解決したい、または満たしたい本質的なニーズに立ち返ることで、従来の業界内の枠を超えた競合分析が必要だと感じた。 戦略見直しの要点は? また、中長期戦略の策定にあたっては、過去にある製品やブランドの発売時の戦略を見直す際に、フレームワークを用いて広い視野で整理することが有効だと実感した。この手法により、導かれる考察が変わり、結果として戦略をより良い形で修正できると考えている。

データ・アナリティクス入門

比較が照らす学びの軌跡

比較の意義は何? 「分析とは比較である」という考え方を実践することができました。その他のデータと比較しながらその意味合いを考察することが、分析の基本であると再認識しました。具体的には、数字による集約、視覚的に捉える方法、そして数式で関連性を見るといった3点について学びました。数字の集約では、平均値のみならず、データの散らばりを示す標準偏差の役割も重要だと理解しました。また、データの中心を考える際には、単純平均、加重平均、幾何平均、中央値といった複数の指標があることを確認できました。 実務への応用は? ヒストグラムの作業では、実際に手を動かすことでその理解が深まり、自身の業務において作業プロセスのミスの発生度合いなどを視覚化する際に活用できると感じました。また、気象庁の温度データを用いた演習を通じて、公開情報からデータをダウンロードして利用する方法を再認識しました。今後は、こうしたデータ活用の手法を実務に積極的に取り入れていきたいと思います。

データ・アナリティクス入門

重みを知れば仕事が変わる

各平均値はどう選ぶ? 加重平均は以前から活用していましたが、その際は重み付けの解釈に重点を置いていました。改めて考えると、単純平均、加重平均、幾何平均、中央値といった各種の平均値は目的に応じて使い分けるべきですが、実際の業務では加重平均に偏りがちです。また、見える化の手法としても円グラフやヒストグラムが多用され、ばらつきは主に標準偏差の数値で把握しています。 業務量の重みをどう見る? 業務量の重み付けについては、データから抽出することで一層理解が深まり、数値化により説得力のある説明へとつながると感じています。今後も業務要件を数値から読み解く手法を積極的に採用していきたいです。 数値が語る本質は? さらに、業務量のヒアリング調査結果やシステム利用率など、数値のインパクトは重要な判断材料となります。これらを自分の業務タスクに組み込み、インプットデータのマネジメントを計画の初期段階から取り入れていくことが今後の課題だと考えています。

クリティカルシンキング入門

言葉で輝く学びの瞬間

正しい日本語の使い方は? 今週は、2つの学びがありました。1点目は、正しい日本語を用いて文章を書くことの重要性です。基本的なことながら、いい加減に文章を書くと、相手に稚拙な印象を与えてしまったり、ビジネス上の不利益につながることもあります。そのため、常に丁寧な言葉選びと構成に気をつけるよう心がけます。 ピラミッドを活かせる? 2点目は、ピラミッドストラクチャーというフレームワークの活用です。この手法を取り入れることで、論理の正しさを視覚的に確認することができ、グループミーティングなどで思考を整理する際に役立つと感じました。 実践でどう活かす? 今後は、メールを送る際に今日学んだ観点で文章をチェックするよう努め、自分では気づきにくいミスがあれば、ChatGPTを活用して添削を依頼するつもりです。また、ノートにメモを取る際も、ただ文章を丸写しするのではなく、ピラミッドストラクチャーを意識して思考を整理しながら記録していきます。

データ・アナリティクス入門

多角的視野で見るデータの魅力

仮説はどう広げる? 他部署の課題解決におけるデータ分析では、検討すべき切り口が多数存在することを意識し、決めつけることなく幅広い仮説を立てることが重要です。データを俯瞰的に捉え、各特性に合わせた代表値を用いながら、偏らない分析を心がけています。 比較軸はどう選ぶ? また、データ分析は比較を軸に、代表値とばらつきを見ることが基本です。集めた関連データから正確な傾向を把握し、単一の視点に陥らないよう、複数の見方を試みています。 分かりやすく伝える? さらに、分析結果を相手に伝えるためには、理解しやすい可視化が欠かせません。それぞれの人が異なる意見や感じ方を持つことから、相手の立場を尊重しながら意見を交えた説明を心がけています。 経験は視野を広げる? 今まで参加したグループワークや講義での交流を通じ、データの見方や可視化の手法は多様であると実感しました。その経験をもとに、柔軟な視点で課題に取り組むことができています。

クリティカルシンキング入門

ピラミッド思考で磨く伝える力

正しく伝える工夫は? 自分の意見を正確に伝えることは決して容易ではなく、相手の状況に合わせて伝えるべき内容を調整する必要があると感じています。そうしたプロセスを通して、情報を整理し相手に負担なく伝える工夫が求められます。 思考整理はどうする? このため、私はピラミッドストラクチャーを活用して自分の思考を整理しています。この手法を使うことで、自分がどのような論理に基づいて主張しているかを明確に示すことができ、商談や上司との相談の際にも有効に働いていると実感しています。 相手に響く書き方は? 文章作成にあたっては、主語と述語がしっかり繋がっているか、1文が長くなりすぎていないかを常に確認しています。また、相手に合わせた主張となっているかどうか、一度紙にピラミッドストラクチャーを書いて論理的に整理する方法を取り入れ、最終的には本当に相手に負担なく伝えられているかどうかを念入りにチェックするようにしています。

「本 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right