データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

クリティカルシンキング入門

問いかけで広がる学びの世界

どんな問いから始めた? 私自身、いきなり打ち手に飛び付いてしまう傾向があると反省し、まずは疑問形の問いを立てることから始めることにしています。考えている途中で「どんな問いだったか」を忘れたり、話が逸れてしまうことが多いため、問いは必ず記録するようにしています。同じ課題に取り組んでいる人がいる可能性も考慮し、問いを共有することでお互いの思考を深めたいと思っています。また、状況に応じてイシューが変わることを意識し、イシューを見直すタイミングに関しては基準を検討していきたいと考えていますが、具体的なイメージは実務の中で模索する段階です。 成果重視の目標設定は? 私の勤務先では、四半期ごとに目標設定を行っており、自身が抱える問題とその解決策の案をまとめた上で上司とすり合わせをしています。この際、「本当に四半期内に成果が出せる内容か」や「組織にインパクトがある内容か」を問いながら見直すことで、より現実的かつ効果的な目標設定が可能になると感じています。 論点はどう深掘り? また、担当領域の事業進捗については月次で実績や見込み、そして伝えたい論点を発表する機会があります。伝えたい内容を深く掘り下げるためにも、問いを立てて考察する手法が役立っていると実感しています。 根本原因を探る? さらに、同僚から相談や質問を受けたとき、従来は単に聞かれたことに答えるだけでしたが、問題の根本原因を捉えようという姿勢を持つことで、より本質的な解決へと繋がると気付きました。これらの経験から、日々の小さな気づきを記録し、業務の際に問いとして形にすることで思考を整理し、深めるように努めています。 手書きは効果的? 手書きで問いを立てることで頭の中を整理しやすいと感じるため、パソコンでの入力よりも手書きを好んで活用しています。また、問いを整理した後は、気軽に壁打ちができるように上司とのオンラインミーティングの時間を事前に設定することにしています。上司と私のオフィスが異なるため、コミュニケーションのタイミングを逃さないよう、スケジュール調整は早めに行うよう心掛けています。

クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

データ・アナリティクス入門

ロジックで広がる学びの扉

MECEの意味は? MECE(ミーシー)とは、Mutually Exclusive and Collectively Exhaustiveの頭文字をとった言葉で、情報を漏れなく、ダブりなく整理する考え方です。この考え方は、多角的な問題分析や意思決定の際に、体系的に物事を捉えるための基盤となります。 ロジックの本質は? ロジックツリーは、複雑な問題や課題を階層ごとに分解し、問題の本質を明確にするためのフレームワークです。原因分析や解決策の立案、さらには意思決定プロセスにおいて、整理された視点を提供し、効率的なアプローチをサポートしてくれます。また、英語では「A Logic Tree」と表現され、複雑な事象を小さく分解することで全体像を把握しやすくしてくれる役割を果たしています。 SNS目的は何? 具体的にSNSプロモーションの計画においてこの手法がどのように活用されるかというと、まず中心となる目的、例えばエンゲージメントの向上やサイトへの誘導、フォロワーの増加などを明確に設定します。次に、その目的を達成するための主要戦略を大きく整理します。ここでは、コンテンツの質と種類、ターゲットとなるユーザー層、投稿のタイミングや方法などの要素が検討されます。 戦略の具体策は? さらに、各戦略を具体的なアクションプランに落とし込みます。たとえば、コンテンツ戦略では掲載する投稿の形式(画像、動画、テキスト)やテーマ、投稿頻度などが挙げられ、ターゲット戦略では、狙う世代やコミュニティとの交流方法を明確にします。そして、配信戦略についても、投稿の最適な時間帯や利用するプラットフォーム、必要に応じた広告の活用法などを細分化して整理します。 効果はどう評価? 最終的に、実行に移した各施策の成果を週ごとや月ごとに評価し、反応の良いコンテンツを強化しながら戦略の見直しやアップデートを行うことで、効果的なプロモーション計画が完成します。こうしたプロセスを通じて、ロジックツリーはSNSプロモーションの行動計画をより具体的かつ体系的に策定するための強力なツールとなります。

データ・アナリティクス入門

学びを実践へ!クロス集計から脱却する方法

業務に手法を活かすには? これまでの学びを通じて、「これは使える」という手法を早速業務に活用してみました。しかし、総合演習では「どれを選択するのか」を考えたとき、これまでの学びがまだ身についていないことを実感しました。また、分析に際してクロス集計に依存している自分の癖にも気づきました。他の手法は示唆されれば思いつくものの、依然としてクロス集計に頼ってしまいます。せっかく学んだものを生かし切れていないと感じ、今後は意識していろいろな分析手法を活用する必要があると痛感しました。数をこなすことでしか選択肢の幅を広げることは難しいと学べたことも良かったと思います。 プロセス分解で何が変わる? 問題の原因を明らかにする際にはプロセスに分解することが重要であると気づきました。当たり前のことですが、自分ではそれができていないという発見がありました。また、経験に基づいた仮説を決め打ちしてしまう癖があることにも気づかされました。プロセスに分解する利便性と、その方法が他者への説得力につながるメリットを業務における実績分析でも生かしていきたいと考えています。具体的な手法として紹介されたA/B分析は既に使用していたものの、それをA/B分析と認識していなかったため、目的や仮説設定、検証の項目が曖昧でせっかくの検証結果を生かし切れていなかったと思います。 需要縮小期にどう対応する? 私の扱う製品は急激な需要縮小期を迎えています。そのため、よく「時代の流れ」として片づけられることが多く、そこで分析が止まってしまっていました。しかし、本当にそれだけが原因なのでしょうか。私は「なぜそうなったのか」をプロセスに分解し、正しく理解することが解決策を得るうえで重要な鍵であると考えるようになりました。幸い、過去の業界・当社の実績データはあるので、まずはそれを改めて分析しようと思います。「時代の流れ」以外の要因がないかを探し、その要因に対処することで売上に貢献できるのではないかと考えています。決め打ちせず、様々な選択肢を探ることで、今よりも良い施策を打てるかもしれないと希望を持っています。

マーケティング入門

ポジショニングで見つける学び

既存商品の強みは? 教材で紹介されたある企業の事例を通して、既存商品の強みを活かしながら新規顧客獲得を図る手法を学びました。具体的には、自社商品の特徴の中から2つの軸を設定し、その軸に基づいてポジショニングマップを作成することで、競合との差別化ポイントを明確にできる点が効果的であると感じました。また、「S(セグメンテーション)、T(ターゲティング)、P(ポジショニング)分析」のうち、SとTは受講前から理解しており、従来の業務でも活用してきたため、本講義でPの重要性を再認識できたことは大きな収穫です。 ペルソナの再評価は? これまでは、狙いたい層から逆算してペルソナを構築し、市場のセグメンテーション、ターゲティング、さらに広報施策へと展開する流れで進めていました。しかし、定期的なポジショニング分析を取り入れることで、ペルソナを再評価し、複数のペルソナやポジショニングマップを保有できることが分かりました。それぞれのターゲットに応じた訴求ポイントを明確にすることで、同一商品から多様な顧客の獲得につながる可能性があると考えています。 学生募集の戦略は? また、学生募集の広報活動における一例では、近年新設された学部を含む、さまざまな学部での募集戦略が検討されています。従来は、情報系志望者や理系学生をターゲットとし、WEB広告やDM施策を中心に実施していました。しかし、競合と比較した場合、自学における「少人数指導」や「統計学・経営系科目の充実」といった強みを活かすことで、理系や情報系に興味はあるものの理数科目に苦手意識を持つ文系学生にも響く広報が可能になると考えています。 競合校調査はどう? まずは、ポジショニングマップを作成するために丁寧な競合校調査を行い、その仮定を裏付けるデータを確認することが重要です。これが実現すれば、ターゲット別の媒体制作の提案がよりスムーズに進むと考えます。また、情報学部だけでなく、経営、国際、看護など他の学部においても同様に競合校調査を実施することで、自学全体のターゲット層をより広げていくことができると期待しています。

リーダーシップ・キャリアビジョン入門

部下の成長を促す「問いかけ術」

エンパワメントの学び方 エンパワメントに関する学びを通じて、各段階での問いかけや考慮すべきポイントが明確になり、大変勉強になりました。まず、仕事を任せる際には、相手が「できそうか」を見極めるための問いかけが必要です。そして、進行中の仕事がこのまま任せられるか、手助けが必要かを判断するためにも問いかけが重要です。さらに、目標設定における本人の参加を促進するための問いかけも必要です。良い目標設定には、具体性、定量、意義、そして挑戦の要素が必要であることを学びました。 仕事への問いかけをどう活用する? これまで、仕事を任せる際の問いかけは意識していましたが、それ以外についてはあまり意識できていませんでした。今後は、仕事の進行や目標設定におけるモチベーションを高めるために、これらの問いかけを意識的に活用していきます。良い目標設定を行うためには、相手をよく理解した上で、適切な内容を的確に伝える必要があります。これは一人ひとりに対して行うには大変ですが、経験を積んで少しずつ身につけていきたいと考えています。 メンバーの自律性を引き出すには? 具体的な実践として、ジュニアメンバーが新しいプロジェクトに取り組む際、本人がゴールを正しく認識できているか確認し、参加を促すようにしたいです。この問いかけにより、メンバーが自律的に目標達成に向けて行動する姿勢を引き出せると考えています。また、目標設定の際には、具体性や意義などの要素を含めるように会話を通じてサポートします。こうして、メンバーが目標に納得し、無理なく実行に移せるようにします。自分自身の目標設定にも、このアプローチを取り入れ、組織全体が納得できる目標を持てるようにしたいです。 円滑な組織運営を目指して さらに、週次の会議では各メンバーが活動を報告する際、ゴールの正しい認識や自律性を促す問いかけを行います。来年度の組織戦略における目標設定では、メンバーのスキルや経験に基づいた納得感の高い目標設定を追求し、ジュニアメンバーにエンパワメントを行い、本人が計画を策定できるよう支援していく予定です。

データ・アナリティクス入門

ギャップに迫る!本質解明の軌跡

計画と実績はどう違う? 年間利益構造の表を見ていると、大きな数字や計画にない項目に目がいきがちですが、計画値と実績値のギャップに注目し、どの項目がどれだけ影響しているのかを把握することが重要だと感じました。 何を見落としている? また、これまで主体的にHowばかりを考えていた自分に気づかされました。さまざまなアイディアが出やすいからこそ、関係者全員が納得するHowを見出すためには、最初に【What】問題の明確化、次に【Where】問題箇所の特定、そして【Why】原因の分析、最後に【How】解決策の立案というステップを確実に踏むことが大切だと理解しました。 理想と現実は何が違う? さらに、業務でKPIを設定する際に、全国平均に頼るだけでなく、「あるべき姿」と「ありたい姿」という二つの視点の違いに気づく機会がありました。現状の分析で「あるべき姿」に留まるだけではなく、自分自身が描く理想の「ありたい姿」まで意識してKPIに反映させたいと強く感じました。 KPI改善は何から? 健康経営やエンゲージメント向上、女性活躍推進、男性育休推進といった分野では、現状分析、KPI設定、課題解決、施策の立案・実行を数値に基づいて進めることが求められます。いずれの場面でも、【What】、【Where】、【Why】の各視点で問題を正確に捉えた上で、【How】の提案を行うことが不可欠と実感しています。 具体的には、健康経営におけるKPIの見直しとして、まず現在設定しているKPIの現状を確認し、数値やグラフでギャップを明らかにしました。次に、相関するKPIの状況を把握し、どの指標が課題となっているかを明確にしました。加えて、多くのKPIの中から、進捗が思うように進んでいないものや他の進捗を阻むものを特定し、専門家の視点を参考にしながら原因を分析しました。その上で、現行のKPIが適切かどうかを再検証し、「あるべき姿」と「ありたい姿」を改めて確認しました。最後に、課題の原因に対して具体的な解決策を検討し、実行可能な施策へと落とし込むプロセスを実践しました。

リーダーシップ・キャリアビジョン入門

メンバーの力を引き出す秘訣とは?

エンパワメントの本質は? エンパワメント・リーダーシップは、メンバーに権限を委譲し、自律性を高めることで彼らの能力を最大限に引き出すスタイルです。このリーダーシップを実行するためには、いくつかのポイントがあります。 目標設定はどう決める? まず、目標設定が重要です。メンバーには、その能力を少し上回る難易度の目標を設定し、それを達成するための計画は本人に任せます。必要であれば支援も提供します。良い目標を設定するためには、メンバーに適した仕事を余裕を持って依頼し、彼らの本音をよく知ることが求められます。これが結果として、メンバーのやる気やモチベーションを高めます。 対応方法はどうする? さらに、依頼内容に応じた対応方法も重要となります。例えば、「分からないからできない」場合は丁寧に説明し、「分かったけどできない」場合には不安を解消するための対話を行います。「分かった、できるがやりたくない」場合には、メンバーがやりたくなるような仕事の渡し方を工夫します。重要なのは、合理的な説明よりも、相手の情緒的な気持ちを大切にすることです。 質問力で成長する? また、メンバーの育成には質問力が重要であり、特にオープンクエスチョンの活用が鍵となります。これによって、メンバーの思考を深め、自律的な問題解決能力が引き出されます。 実践事例は何か? エンパワメント・リーダーシップを活用するため、いくつか具体的な取り組みを行っています。一つは、定期的な1対1のミーティングで、オープンクエスチョンを活用してメンバーの思考を促し、進捗を確認しています。権限委譲では、プロジェクトやタスクをメンバーに委譲し、彼らの自律性を高めて成功体験を積ませています。また、メンバーの成果には具体的で建設的なフィードバックを提供し、ポジティブなフィードバックを通じてモチベーションを高めることを重要視しています。 これらの取り組みを通じて、メンバーが最大限に力を発揮できるよう支援し、組織のミッションを達成する強力なチームを築くことを目指しています。

リーダーシップ・キャリアビジョン入門

自律と挑戦が描く組織未来像

エンパワメントって何? エンパワメントについて学んだことは、組織の目標達成のために、メンバー自身が自律的に行動できる力を育む技術であるという点です。押しつけや単なる指示ではなく、育成の観点からメンバーを支援することで、彼ら自身の成長につながり、結果として組織全体のレベルアップにも寄与すると感じました。また、各メンバーのレベルアップに繋がる業務内容の設定や、効果的なコミュニケーションの重要性についても改めて学び、組織の成長にはメンバー個々の成長が不可欠であると実感しました。 目標はどう意味づけ? 目標設定に関しては、目標達成後にどのようなレベルに到達しているか、また達成によってどのような状態が実現できるかを明示することが重要だと感じました。以前は単に組織の課題に対する数値目標を示すだけでしたが、目標の意義や、本人にとってのメリットを具体的に示すことで、やる気や意欲を引き出す効果があると考えています。 よい目標の作り方は? また、よい目標を設定するためには「意義」「具体性」「定量性」「挑戦」という4つの軸を意識する必要があります。これにより、目標に込められた意義が明確になり、本人のやる気や成長へとつながる目標設定ができるようになると期待しています。 組織強化の方法は? 今後は、目標とその意義を明確にすることで、強い組織づくりを目指していきたいと考えています。現在は所属する部署を中心に取り組んでいますが、将来的には部全体へと視野を広げ、関わりの少ないメンバーも対象としていくことで、全体の課題解決や組織力の向上に貢献できると信じています。マネージャーとしてだけではなく、リーダーとしてチームをけん引する視点を大切にしていきたいと思います。 面談で何を確認? 今年度の目標設定はすでに終了していますが、改めて組織メンバーとの個別面談を通じ、各自の目標について丁寧に説明し直す予定です。特に、「意義」と「挑戦」に重点を置くことで、各メンバー自身の成長を促し、組織全体の向上につながるよう努めていきたいと考えています。

戦略思考入門

目的を定め、未来を拓く

戦略的ヒトって何? ウォーミングアップでは、「戦略的なヒト」というイメージについて問いかけられ、かなりの時間を費やしました。定義が曖昧なままでは回答が難しいため、意地悪な質問だと感じる一面もあります。多くの方も同じような感想を抱いたのではないでしょうか。 戦略思考とは? 戦略的思考とは、まず目指すべき適切なゴール(目的)を設定し、次に現在地からそのゴールに到達するための道のりを明確に描き、可能な限り最速・最短でその目的に近づくことだと整理できます。目的がなければ目標も生まれませんし、道のりを描くという行為は、いわばスケジューリングであると理解できます。なお、最速・最短で到達するという点は、当然のことともいえるでしょう。 学びの結論は? 以上を踏まえると、今週の学びの結論は「目的を定めること」であると整理できます。 再就職戦略は? 再就職活動を進める私にとっては、自分自身のキャリアを商品と見なし、企業という顧客に対して戦略的な思考をもってアプローチすることが重要だと感じています。昨年はマーケティング思考をベースにアプローチしていた記憶もあり、今回のゴール設定は再就職でありながら、適切且つ期限が設けられたものである必要があると考えています。職務経歴書のブラッシュアップを繰り返し、複数社に応募する中で、行動の妥当性の見直しも常に意識しているところです。 目的の検証は? ただし、ゴールに到達した場合であっても、そのゴールが本当に適切であったかどうかを後から検証する必要があります。再就職の目的が収入の安定なのか、やりたかった職種に就くことなのか、働きがいのある環境を目指すべきなのか、目的の追求が今後の課題となるでしょう。再就職や転職には失敗がつきものですが、全面的に失敗と言えるわけではなく、すべては経験として再チャレンジへとつながります。 戦略観を語る? また、ライブ授業の中で「この人の考え方は戦略的だ」と感じる人物について、もっと詳しく語り合えたらと感じた点もありました。

データ・アナリティクス入門

多角的視点で仮説を練り上げる重要性とは

仮説構築のポイントとは? 仮説を立てる際のポイントとして、以下の二点が重要であると学びました。 まず、複数の仮説を立て、そこから絞り込むことが大切です。最初から決め打ちにせず、他の可能性を探ることで幅広い視点を持つことができます。また、仮説同士に網羅性を持たせ、異なる切り口で考えることも必要です。具体的には、3Cや4Pなどのフレームワークを活用することで、多様な視点から仮説を構築することができます。 データ評価の重要性を理解する 次に、仮説を検証する際のデータ評価についてです。単に目の前の数字を比べるのではなく、平均値や割合など、どの指標を比較するかを慎重に選ぶことが重要です。データの取り扱いについても、自分に都合の良いデータだけを集めるのではなく、必要なデータを自ら取りに行く姿勢を持つことが求められます。これにより、仮説はより説得力のあるものとなります。 実証実験の成功をどうつなげる? 今週の学習では、「複数の仮説を立てる必要性」や「自分の都合の良いデータだけをとらない」といった点の重要性について改めて学ぶことができました。実証実験においては、これらのポイントが本来最も重要であるにもかかわらず、見落とされがちです。新規事業においては、実証実験の成功要因や失敗要因を特定し、次へと繋げるためにも、責任を持って仮説検証を行う必要があります。 目標達成のための仮説設定 私の担当フィールドでは、目標達成に向けたキーファクターを見定めるために、複数の仮説を自分なりに設定したいと考えています。具体的には、以下のステップを意識して進めていきたいと思います。 - 実証実験の検証目的を見直す(現地側と調整可能な範囲で行う) - 検証目的に沿って仮説を洗い出す(いくつかピックアップし、検証項目を絞る) - 実証実験の目標値を先方と合意する これらを進めるにあたり、今週の学習で特に印象に残った「複数の仮説を立てること」や「自分の都合の良いデータだけをとらない姿勢」を常に意識して実行していきたいと考えています。
AIコーチング導線バナー

「本 × 設定」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right