データ・アナリティクス入門

全体をとらえるデータの物語

全体像と仮説の関係は? データ分析に取り組む際、単にあらゆる情報をむやみに収集するのではなく、全体のストーリーを大切にすることが印象に残りました。アウトプットのイメージを持ってデータ収集を行うと、目的に沿った情報が得やすく、分析の方向性も明確になります。また、仮説を立てる際には、フレームワークを活用することで多角的な視点から仮説を検討できますが、その検証に必要なデータは個々のアプローチによって異なるため、どの視点から何を分析するのか、目的を明確にすることが重要であると感じました。 データ収集のポイントは? 現場でデータを収集する方法として、アンケート調査やヒアリングが主な手法として挙げられます。アンケート項目を作成する際には、その趣旨を明確にし、複数の仮説と全体のストーリーに沿った質問を工夫することが求められます。こうした意識を持って、目的に合った質問項目を作成し、データ収集に臨むことが重要であると考えています。

クリティカルシンキング入門

分解で変わる!見える真実

数値分解はどうする? ITの現場では原因分析のシーンが何度もあり、今回の学習は具体的な分析手法を再確認する良い機会となりました。特に、数値をどの要素で分解するかが重要で、正確に分けないと誤解を招く恐れがあるという点は、日常的に直面している課題でした。そのため、今後は多角的な視点で分解することを意識したいと考えています。 印象改善はどう実現? また、プレゼンテーションなど、相手に良い印象を与えたいシーンにおいても、事実と異ならない範囲で資料を工夫する手法として、この学びを活用できると感じました。 不具合原因の見直しは? システム構築における不具合の数や原因分析の場面でも有用であるため、既存の分析フォーマットの中から今回の学びで得た要素を見直すことにします。さらに、部下と行う1on1でのヒアリングシーンにおいて、メンバーが抱える不安や不満などのメンタル的な問題に対しても、役立てられないか検討したいと思います。

デザイン思考入門

声に気づく、未来を拓く学び

顧客の悩みをどう把握? これまでの顧客アンケートを見直すと、顧客の抱える課題や悩みを再度分類できる可能性を感じました。複数のクライアントから同様の意見が寄せられている場合でも、その根本にある問題を推測し、顧客視点で整理することが大切だと感じました。 気づいていない課題は? また、定性調査の中には、クライアント自身が気づいていなかった課題があることも分かりました。声に出して気づくことや、インタビューで質問することを通じて、その時初めて浮かび上がる問題も存在します。今後は、こちらの推論をどう取り入れるか、またはまずは質問を中心に情報を集めるべきか検討していきたいと思います。 実態把握の重要性は? さらに、「解決策ありき」で考えず、まずは現状の事実を把握する手法を重視すべきだと感じました。加えて、インタビューの音声記録も積極的に行い、プロセスやフレームワークへの体系的整理にも力を入れていきたいと考えています。

データ・アナリティクス入門

自分に合った改善のヒント

どこに課題が潜む? 今回の講義を通して、課題の把握と改善のプロセスを具体的に理解することができました。どの段階に課題が潜んでいるのかを明確にし、改善策を講じる際には、単に取り組むのではなく、状況を比較しながら検証することが重要だと実感しました。 どのプロセスが効果的? また、最終ゴールに向かう各プロセスを数値や成果で把握し、どこに最も効果が得られるのかを検討する必要があると感じました。A/Bテストのような手法を用いて、具体的な改善状況をモニタリングしながら継続的な改善を進める体制の構築が求められると捉えています。 どうチームで共有? まずは、自身の業務における最終ゴールに向け、対象者のプロセスを整理して見える化し、改善すべきポイントを洗い出すことが大切です。その上で、実施可能な箇所でテストを行い、プロセス全体と改善の手法についてチーム全体で共有し、全員が理解できるようにすることが必要だと考えています。

データ・アナリティクス入門

ヒストグラムで読み解く営業戦略

平均の捉え方は? これまで、平均値については単に合計を個数で割るだけの計算に留め、データのばらつきにはあまり目を向けていませんでした。加重平均や標準偏差といった考え方は知っていたものの、実際の活用方法については具体的なイメージが薄かったため、今回の講義でその使い方を理解することができました。 顧客層の把握方法は? この学びを自分の業務に活かすため、地区全体の顧客売上データをヒストグラムで区分し、顧客層ごとの購買力を把握する手法に注目しました。顧客の売上ランクごとに適切な営業施策を検討し、個別にアプローチできる可能性を感じています。 実践で効果は? 具体的には、まず売上データを取得し、実際のヒストグラムを作成して区分を始めます。その上で、各区分ごとに合わせた営業施策の計画と実施を行い、売上数字の定点観測で変化を読み取ります。このプロセスにより、施策の効果を判断し、次の戦略検討に役立てる予定です。

データ・アナリティクス入門

A/Bテストで売上向上へ、新たな一歩

仮説検証の重要性を再確認 段階を踏んで仮説検証を進める重要性を改めて認識しました。また、A/Bテストという手法についてこれまで全く知らなかったため、新しい分析方法として今後積極的に活用したいと考えています。 A/Bテストの効果的な活用法は? 売上向上の施策に対しても、効果検証としてA/Bテストを用いてみたいと思います。これまで効果検証自体は実施していましたが、異なる施策を同時に行ったことはありませんでした。今後は実施できる事案を含め、慎重に検討していく予定です。 情報共有と承認のステップ まず、1か月以内に従来の施策とA/Bテストによる効果検証の違い、メリット・デメリットに関して部長会で情報共有を行う予定です。その際、A/Bテストが実施できそうな事案についても紹介し、従来法では得られない効果まで説明します。実施に対する承認を得た後は、来期の1Q内に実務担当者と協力し、テストを実施する予定です。

クリティカルシンキング入門

直感を超える分析力で未来を変える

「MECE」で効率的に分析する方法とは? 目で捉えた情報は、直感的に判断するのではなく、まず分解して考えることが重要です。分解の手法としては、まず全体を定義し、MECE(もれなくダブりなく)を意識して複数の切り口から分析を行います。MECEを適用することで、効率的な分析が可能となります。たとえ思い通りの結果が出なかった場合でも、それ自体が貴重な分析結果と捉えることが大切です。 WBS作成で精度を上げるには? たとえば、プロジェクトのWBSを作成するときには、全体を定義した後、いくつかのカテゴリに分解して、重複がないかチェックすることで、効率化と精度向上を図ることができます。また、システムの基本設計を行う際には、MECEを応用し、実装時に条件の重複を減らすことでエンジニアの工数を削減します。さらに、製品のUI/UXを検討する際も、仮説や切り口を複数持って分析することで、ユーザの満足度を高めることができます。

データ・アナリティクス入門

平均の壁を越える、新指標の挑戦

課題はなぜ難しかった? 前週に比べ、今回の課題は難易度が上がっており、理解するまでにやや時間がかかりました。これまでは平均値を中心に分析していましたが、今回は単純平均、加重平均、幾何平均、中央値、標準偏差といった各指標を活用することで、より正確な分析に結びつけることができると感じました。 営業データの見直しはどうする? 業務では営業関連の数字を扱う機会が多いため、従来は一律の平均値を用いて前年度との比較を行っていました。しかし、さまざまな方法を試すことで、異なる角度からデータを分析できるのではないかという可能性を感じています。 新手法の試行錯誤は必要? これからは、どのデータにどの指標を適用するかを十分に検討した上で、目的に合わせたデータの取得と分析に取り組んでいきたいと思います。新しい手法に慣れるまで試行錯誤はあるかもしれませんが、自分にとっての最適な分析方法を見つけ出すことを目指します。

クリティカルシンキング入門

グラフで見える成長の軌跡

数値グラフは何を示す? 課題の解決策を検討するにあたり、まずは数値データを取り出しグラフ化することで、特徴や傾向を明確にする手法に取り組みました。このプロセスは、どんな場面でも活用できる有効な方法であり、何が問題なのかを整理し、具体的な分析に結びつける役割を果たすと感じています。 数字加工って何が違う? また、仕事においても、ただ発生事象の数字を眺めるのではなく、グラフ化や数字の変換を行うことで、より理解しやすい形に変えることの重要性を再確認しました。これまで、過去の実績に頼って漠然と解決策を導いていた部分があったため、即座に構造化して本質を捉えることが、具体的な根拠に基づいた回答につながると実感しました。 手書きメモは有効? 今後は、日常業務で発生する事象についても、手書きの簡単なメモを用いて構造を整理し、同僚との会話を通じて自分の理解と重要ポイントが合致しているかを確認していこうと思います。

データ・アナリティクス入門

仕組みを解読、未来を拓く

ボトルネック、どう見抜く? 採用プロセスをステップごとに区切り、どこにボトルネックがあるのかを特定していく手法が印象的でした。要素を細かく分解し、整理・比較することで、問題の把握と理解が非常にしやすくなった点が魅力的です。 販促効果はどう検証? 自分の勤務先でも、売上に至るまでのプロセスが「申込件数」「審査承認」「成約」などに大別できるため、より細かく検証したいと考えています。さらに、担当する各販売店ごとに分け、各特徴ごとにグループ分けを行って共通点を洗い出すことで、具体的な対策に結びつける取り組みを行いたいと思います。まずは、特定の支店に焦点を当て、その販売店データを集め比較・検討します。その結果、もし明確な特徴が見えてグルーピングが可能となれば、詳細な報告書を作成し、リベートやアローワンスなどの販促策に活かす予定です。また、A/Bテストが可能な場合は、さらなる効果検証にも挑戦したいと考えています。

データ・アナリティクス入門

公平な比較で見つける最適解

打ち手はどう選ぶ? 今週は、課題解決のプロセスにおける打ち手、つまりどう取り組むかという部分に焦点を当てました。その中で、2つの案を比較して検証する手法としてA/Bテストについて学んだのが印象に残りました。A/Bテストは、対象となる条件をそろえることで公平に比較できるため、効果的な意思決定に役立つ方法です。 調査パターンはどう確かめる? 実際の業務ではネット販売が少ないため、A/Bテストそのものは行っていませんが、製品の発売前には複数のパターンを設定して比較検討する調査を実施しています。たとえば、味のバリエーションや商品名・コンセプトなど、さまざまな要素について、それぞれのパターンを複数同時に調査することで、目的にかなった最適な方向性を見極めています。今回の学びを通じて、調査目的を明確にする重要性を改めて認識し、今後は目的に沿ったパターン設定をより一層意識して取り組んでいきたいと考えています。

データ・アナリティクス入門

仮説の種が戦略を育てる

仮説の捉え方はどう? 仮説を立てる際、時間軸と結論の視点で捉えるのか、あるいは問題解決のための手段として捉えるのか、細かく分解できることに気づきました。漠然としていた仮説も、目的と必要な手段を明確にすることで、より効果的かつ実践的なものに仕上げることができると学びました。 本当に必要な策は? 売上向上を目指す中で、「何が必要か?」という曖昧な問いだけでは、的確な戦略が立てられないという経験があります。そのため、問いを細分化し、一つ一つの要素に対して仮説を立て検証することが重要だと実感しています。 現状分析の手法は? 具体的には、まず自部署の業務範囲における現状の顧客アプローチ方法を洗い出し、効果があるものとそうでないものをデータに基づいて検証します。その上で、検証結果を踏まえて問題解決のための仮説を構築し、ボトルネックとなっている部分の改善策を検討していく手法を実践しています。

「検討 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right