データ・アナリティクス入門

仮説で読み解くデータの裏側

仮説の意義は? 今週の学習では、どんな状況においても仮説を立てることの重要性を再認識しました。仮説はデータ分析や問題解決の道しるべとなり、何を調べ、どんな情報を収集すべきかを明確に示してくれます。また、代表値だけでデータの全体像を把握するのではなく、その背後にあるばらつきにも目を向ける必要があることを学びました。平均値は全体を簡潔に表す指標ではありますが、ばらつきを加味することでデータの実情をより深く理解できるという点が印象的でした。 データ把握はどう? データの分布を視覚的に把握するためにはグラフを活用することが有効です。ヒストグラムを用いれば分布の様子が、散布図を用いれば2つのデータ間の関係性が直感的に読み取れます。また、標準偏差を理解し算出することで、データのばらつきを定量的に捉え、より正確な分析が可能になるという点も学びました。これらの学びは、特に患者の受診動向分析の現場で大いに役立つと感じています。 具体計画は? 具体的な行動計画としては、以下のステップを実施する予定です。 1. データ収集と整理  ・受診データの抽出:電子カルテシステムから必要な情報を取り出す。  ・データクリーニング:欠損値や誤りがないか確認する。  ・データ加工:分析しやすい形に整える。 2. 仮説構築と検証  ・仮説リストを作成:過去のデータや経験を踏まえ、受診動向に関する仮説を立てる。  ・データ分析:収集データを基に仮説の正否を検証する。 3. 代表値の吟味  ・複数の代表値の算出:単純な受診者数だけでなく、年齢層別、性別、居住地別に平均値や中央値、最頻値などを計算する。  ・代表値の比較:異なる代表値を比較し、データの傾向を把握する。 4. 可視化  ・グラフ作成:受診者数の推移やデータ分布をグラフで表現する。  ・グラフ分析:作成した図表から季節変動やパターンを読み解く。 5. 標準偏差の活用  ・各診療科ごとに受診者数のばらつきを標準偏差で算出する。  ・科ごとの差異を比較し、正確な分析に役立てる。 6. 分析結果の活用  ・傾向の把握:得られたデータから受診動向の傾向を明確にする。  ・対策の検討:把握した傾向を元に、より良い医療サービスを提供するための対策を議論する。  ・情報共有:分析結果や検討内容を関係部署で共有する。 7. 行動の継続と改善  ・定期的な分析:定期的な受診動向の確認により、新たな傾向や変化を捉える。  ・行動計画の見直し:状況の変化に合わせ、計画を適宜更新する。 各ステップを着実に実行することで、学んだ分析手法を実務に効果的に活かしていきたいと考えています。

データ・アナリティクス入門

実践で磨くA/Bテスト活用術

フレームワークの使い方は? 今週の講義は、具体的なフレームワークや分析手法を紹介するものではなかったものの、複数の視点を取り入れて考察する過程が印象的でした。仮説の立案や必要なデータの検討にあたってフレームワークを用いた結果、回答がしやすく感じられ、今後も折に触れて活用していきたいと思います。 データ活用はどう? また、ある指導者の思考方法に沿って考えることで、データ活用の体系的な流れが見えてきました。A/Bテストについては、アンケート作成のしやすさやデータ収集の容易さから非常に便利なツールだと感じました。先週のホテル宿泊客向けの設問、たとえば「食事か部屋か」という内容は、A/Bテストに最適な例だと思います。以前に似た分析を行った経験もあり、体系的に学んだことで活用の幅が広がったと実感しました。調査対象以外の条件を統一するという基本的な考え方も、以前学んだ内容を思い出させるもので、理解しやすかったです。さらに、同じ環境や条件下でランダム化を行うことで、精度の高いデータが得られる点にはしっかりと納得できました。 PDCAで進める秘訣は? A/Bテストは実施が簡単で、所定の時間内に複数回行えるため、PDCAサイクルを迅速に回しながら正解に近づける点が魅力的です。日常生活や業務での応用については現段階では明確ではありませんが、来月から本格的に業務が始まれば、積極的に活用していきたいと考えています。日常への適用はやや難しいと感じるものの、A/Bテストに類する試みが可能であれば、試してみたいと思います。また、今週はストーリー形式で原因追及を行う講義であったため、新しい手法としてのA/Bテストを講義内容に当てはめるのは少し難しく感じましたが、今後も機会があればどんどん利用していきたいです。 小さな失敗の学びは? 次回の業務では、ぜひA/Bテストを活用してみたいと思います。ある書籍で、成功の本質は致命的でない小さな失敗を積み重ね、そこから成功のカギを見出すことだと学んだこともあり、PDCAサイクルをより迅速に回すために、この手法を取り入れていくつもりです。今週の講義内容については、統計の視点からも改めて振り返り、深く学んでみたいと考えています。先週と今週のマーケティングに関連する講義や、過去に読んだ書籍を踏まえると、再び深く学んでみたい部分もありますが、やるべきことが増えているため、優先順位をつけながら学習していくつもりです。 AIに見抜かれた理由は? なお、Q1の回答で少し手を抜いたところ、すぐにAIに気付かれてしまい、驚きました。来週は引越しのためバタバタしそうですが、グループワークの課題がなかったのはありがたかったです。

データ・アナリティクス入門

正しい思考で磨く自分の軌跡

正しい思考は何? 沢山のフレームワークが出てきましたが、本質は正しい考え方や思考方法を知り、学び、定着させることだと感じました。習得するためには継続的な取り組みが必要で、これまでノートにまとめたメモを見返しつつ、改めてここに整理してみました。 仮説をどう作る? 【仮説の構築】 まず、問題を明確にする(What)、問題箇所を特定する(Where)、原因を追求する(Why)、そして解決策を立てる(How)のプロセスを大切にしています。仮説を立てる際には、複数の可能性を網羅し、一つに決め打ちしないことを意識しています。 また、取り巻く環境を3C(Customer:市場や顧客、Competitor:競合、Company:自社)の視点で考え、自社の状況は4P(Product:製品、Price:価格、Place:場所、Promotion:販促手法)で検討することで、より具体的な分析が可能になります。 情報の取り方は? 【データ収集】 既存のデータや一般に公開されている情報、パートナーの所持するデータを確認することから始め、さらにアンケートやインタビューなどで新たに情報を集める取り組みを行っています。誰に、どのように情報を収集するか、また比較できるデータを忘れずに取る点が重要だと意識しています。 どう考えを広げる? 【仮説思考】 仮説とは、ある論点に対する一時的な答えです。結論や問題解決のための仮説を、知識を広げ多角的な視点から検討することで、説得力と行動の精度を高めることができます。思考実験や「なぜ?」を繰り返すなど、ロジックツリーを活用しながら多様な仮説を生み出し、常に発想を広げる努力が求められます。 仮説はどう検証? 【仮説の検証】 仮説と検証はセットで考え、投資額や巻き込む人数、不確実性といった観点から必要な検証レベルを見極めます。初期段階で枠組みを設定し、定量・定性のデータを収集・分析することで、より客観性のある仮説の肉付けや再構築を行うようにしています。 市場をどう見る? 【マーケティング・ミックスとその他の分析手法】 製品戦略、価格、流通、プロモーションのそれぞれの側面を4Pで検証することに加え、5Aカスタマージャーニーを活用して現代の顧客行動を捉えています。また、クロス集計分析を通して、全体の傾向や特徴、特異点を把握し、次の打ち手を考えるための洞察を得ることも重視しています。 実行にどう生かす? 最終的には、これらのフレームワークや手法を日常的に活用することで、検証マインドを鍛え、チーム全体に浸透させる意識を持つことが、戦略の立案や実行に大きく寄与すると実感しました。

リーダーシップ・キャリアビジョン入門

心つながる共創リーダーの軌跡

自分に余裕はあるか? エンパワメント型リーダーシップを発揮するには、まず自分自身に時間的・精神的余裕を持つことが大切です。その上で、部下のスキルや経験はもちろん、価値観や性格を深く理解し、部下のモチベーションを引き出して自律的な行動を促す必要があります。 委任時のポイントは? また、業務を委任する際には、部下が「分からない」「できない」「やりたくない」といった状態にあるかどうかを見極め、論理面だけでなく感情面にも配慮することが求められます。具体的かつ明確な目標や計画は、6W1Hなどの手法を用いて提示することで、効果的に伝えることができます。 仕事の適材適所は? さらに、全ての仕事が誰にでも適しているわけではありません。遂行レベル、目標の難易度、不確実性、緊急度などを踏まえ、適材適所の配置を心がけることが重要です。 新制度で期待は? 今年から人事制度が変更され、各メンバーにはより高い役割が期待されています。従来のように個々に役割と業務目標を示すだけでなく、個人ごとの期待役割に応じた目標設定と目線合わせが重視されるようになりました。このプロセスを通じて、メンバー間の相互理解を深めるとともに、主体性やモチベーションの向上が期待されています。 共創の時間は確保? 目標設定では、管理者が一方的に指示するのではなく、方向性を示しながらメンバーと共に考える時間を確保することが鍵となります。この共創的なプロセスにより、メンバーは支援されている実感を得るとともに、不安や懸念も具体的に共有できるため、より実効性の高い目標設定とチーム全体のパフォーマンス向上につながります。 期待役割はどう? 【第1段階:期待役割の明確化と共有】 各メンバーの期待役割を明確に定義し、個別面談を通じて組織の方向性と求める役割を丁寧に説明します。メンバーからのフィードバックを受けながら、初期の理解を確認することがポイントです。 共創目標は? 【第2段階:共創的な目標設定】 期待役割に基づき、マネージャーが目標設定の方向性を提示し、メンバーと共に具体的な業務目標を検討するワークショップを実施します。メンバーの意見や懸念を反映し、6W1Hを意識した具体的かつ測定可能な目標を共に設定します。 合意形成はどう? 【第3段階:目標の合意形成とフォローアップ計画】 設定された目標について最終確認と合意を行い、目標達成に必要なリソースや支援体制を整えます。また、定期的な進捗確認のためのミーティングスケジュールを組み、目標達成の過程で成長機会を明確にして継続的な対話を行う仕組みを整備します。

戦略思考入門

戦略的選択で最大の成果を目指す

戦略的選択の重要性とは? 今週は「戦略的に選択する(捨てる)」というテーマについて学びました。これまで続けてきたことを「捨てる」のは誰しも避けがちですが、ビジネスにおいては重要な選択であると感じました。 捨てる際に考慮すべき要素は? 捨てる際に考慮すべき要素として、①時間当たりの利益率、②市場性、③ROI(投資対効果)に基づいて優先順位を決めることは合理的で、判断の基準として有効であると感じました。 判断基準の統一がなぜ重要? 捨てる際の留意点としては、以下の点を学びました: 1. 決断は一人で行うのではなく、複数人の視点を加えることが重要です。そのためには、判断基準を統一するための検討材料の準備が必要です。 2. 何かを捨てることで顧客の利便性が向上することがあります。これはトレードオフの考え方にリンクしており、コストリーダーシップか差別化戦略をとるかを判断し、資源配分をメリハリよく顧客ニーズに合わせて考える必要があると感じました。 3. 昔の惰性に流されないようにすることも大事です。組織改編を通じて多くの仕組みや手法を見直してきましたが、その際にメンバーから不満が出ることもありました。このため、なぜそれを実行する必要があるのかを視覚的に説明できる準備が求められます。 4. 餅は餅屋に任せるべきだと感じました。 学びをプロジェクトにどう活かす? この学びを踏まえ、以下のプロジェクトに活用できると考えています: 1. 組織の体制改編の検討: 現在の作業をフルタイムの従業員だけで行うのではなく、「捨てる」の意識を持ちたいです。惰性で実施している作業で廃止可能なものを見極め、アウトソーシングやベンダーに任せられる業務を選定する際には、作業時間、工数、および費用を考慮したいと思います。 2. 顧客満足度の向上: 製品の領域ごとに異なる課題に対してのアクションがあります。どのアクションを取るべきかをトレードオフの観点から判断し、効用を最大化するポイントを見つけたいと考えています。 組織改編の具体的ステップは? 具体的には、以下のステップを行いたいと思います: - 体制改編においては、FTE計算を基に組織体制案を作成し、新体制時の各作業の理想的な時間と工数を提案します。そして、不要な業務をリストアップする段階に進みます。 - 顧客満足度向上における課題については、必要なリソースを投入する課題とその解決策の優先順位を決定するための資料を作成し、議論を進めます。最終目標は顧客満足度の向上であり、解決策の優先順位決定においてトレードオフの観点から最も効用が高まる要因を検討することが課題です。

デザイン思考入門

対話が拓くプロトタイピング

試作で既視感感じる? 試作は、プロダクトデザインや建築プロジェクトで通常実施される工程であるため、どこか既視感を覚えました。また、WEBのインターフェイスデザインに見られる機械のスイッチパネルといったメタファーは、自身の専門分野に近いこともあり、非常に理解しやすいと感じました。 WEB手法は建築に合う? WEBデザインと同様のプロセスが、建築や施設管理運営のデザインにどのように応用できるのか、非常に興味深いと感じています。これまでの事例に照らし合わせ、応用の可能性を検討してみるとともに、自身の事務所のホームページのリニューアルにも活用する予定です。 建築手法は信頼できる? 建築業界で活用される開発手法は、長い歴史と多くの実践に裏打ちされているため、精度が高く実務にも適していると実感します。しかし、似た考えを持つ人々によって運用されるため、気づかぬうちに独自の進化を遂げる場合もあります。また、竣工後のオペレーションや保守管理におけるプロトタイピングについては、まだ標準化された手法が確立されていないのが現状です。 デジタル手法は革新的? 一方、デジタル分野ではアジャイルなど、他分野にも影響を与える新たな開発手法が続々と生まれており、今回学んだフレームワークも積極的に研究し、応用してみたいと思います。機会があれば、実際にデジタル業界で活躍されている方のお話も伺いたいと考えています。 評価の落とし穴は? プロトタイピングの課題として、専門家でないユーザーが成果物の内容よりも表現技術の巧拙に左右されやすい点が挙げられます。上手な絵、最新の機材を活用した表現、巧みな言葉遣い、さらにはアイデアの発案者の知名度や地位によって、ユーザーの評価が影響を受けることがあるのです。優れたプロダクトを生み出すためには、制作者自身も厳しい目線を持つユーザーとの協働が必要だと感じています。 プロトタイプの役割は? また、プロトタイプは単なる開発工程の一部に留まらず、ユーザーとの対話のためのメディアとして機能すること、さらには開発チーム内のコミュニケーションツールにもなることを改めて確認できました。 意味の共有はどう? こうしたポイントは理解しているつもりでも、実際の開発後半では、開発者のアイデアを強調するためのプレゼンテーションツールとして利用され、ユーザーや他のメンバーが十分に参画できなくなるケースも少なくありません。今後の開発プロセスでは、プロトタイプの本来の意味をチーム全体で共有し、全員が対話できる環境作りに注力したいと考えています。

リーダーシップ・キャリアビジョン入門

キャリア・アンカーとサバイバルで見つけた未来への指針

リーダーシップに必要な内面の探求とは? リーダー自身が自分の内面と向き合っているほど、リーダーシップを発揮しやすく、そのようなリーダーに人は付いていきたいと思うことを実感しました。今回、キャリアを安定させるために役立つ二つの理論を学びました。 キャリア・アンカーはどう役立つ? まず、【キャリア・アンカー】についてです。キャリア・アンカーとは、人が仕事を進める上で、自分にとって最も大切で、どうしても犠牲にしたくない価値観や欲求、動機、能力などについてのセルフイメージのことです。キャリア・アンカーには以下の八つのタイプがあります。 - 特定専門分野・職能別のコンピタンス(専門性や技術の追求) - 全般管理コンピタンス(ゼネラル・マネージャー) - 自律・独立(縛られず、仕事のやり方は自分で決める) - 保障・安定(経済的安定、保障が重要) - 起業家的創造性(自分のアイデアを創造する) - 純粋な挑戦(挑戦を追い求める) - 奉仕・社会貢献(人の役に立っている) - 生活様式(仕事と私生活のバランスが重要) キャリア・アンカーを確かめる方法には、自己診断(キャリア指向質問票への回答)やインタビューがあります。また、キャリア・アンカーと職業を直接結びつけないこと、どのキャリア・アンカーが良い悪いはないこと、それぞれが今んのキャリアや人生における判断基準に影響をもたらすことを留意点として学びました。 キャリア・サバイバルをどう活用する? 次に、【キャリア・サバイバル】についてです。キャリア・サバイバルとは、職務と役割の戦略的プランニングで、組織が自分に求めるものを把握する手法です。これには、仕事の棚卸や環境変化の認識などが含まれます。 奉仕・社会貢献の意義を再発見 キャリア・アンカーの中で迷った末に「奉仕・社会貢献」の優先順位が高いことに気づきました。仕事を通じて自分が世の中や誰かのためになっていると感じることが、私にとって最も重要な要素であると実感しました。今後、ライフキャリアを検討する上での重要な指針となることが期待されます。 キャリアの振り返りを続ける意義 定期的にキャリア・アンカーやキャリア・サバイバルを用いて自分自身を振り返る機会を持ちたいと思います。キャリア・アンカーは大きく変わらないと感じる一方で、キャリア・サバイバルは常に変化していくと予想しています。チームでより良く仕事をするため、今の仕事を通じて皆の人生がより良くなるために、関わるメンバーとも互いに共有していきたいと思います。

データ・アナリティクス入門

ビジネス分析で得た新たな気づきと学び

分析はどう進める? 演習を通じて、実際のビジネスにおける分析思考を実践することができました。目的を明確にした分析や比較対象の明示、仮説を網羅的に洗い出し、可能性の高いものを検証していくプロセスを学びました。また、数値のばらつきを意識し、代表値に惑わされず、データの適切な見せ方についても考えることができました。 割合の見方は? 実数と割合の両方を把握することの重要性を理解しました。変化が現れる割合の内訳や、それが分析に値するかどうかを見極めることが求められますが、そこに対応が不十分な点に気付きました。無視してもよい場合は早めに切り捨てることで、分析の効率化につながることを学びました。 実績はどう比べる? 実績を比較する際には、既存データの見え方に惑わされないようにし、元データをしっかり把握することが重要です。逆に社内での説明時には、平均や代表値を用いつつ、その根拠となるデータもグラフで示し、データの精度を納得させるように努めたいと思います。平均、中央値、最頻値のどれを用いるか、慎重に考える必要があります。 不要データは除く? 効率化のために、不要な情報を最初に除外する判断が求められます。データの予測精度を上げるために複数の方法を試し、正確性に欠けるものを排除することが必要です。具体的には、当年実績予測を立てる際に、どの予測方法を採用するかを検討します。いくつかの手法を出し、例年の傾向を踏まえて選ぶといった作業が重要です。 課題は何でしょう? 分析における「比較」「目的」「課題」を明確にし続けることが重要であり、学びやインプットの時間を意識的に捻出することを続けたいと思います。特にExcelの実践スキルを高めることが課題であり、データ分析の本質や考え方についての理解を深めることができましたが、実践がまだ不足しています。業務の中でも学びの時間を作り、スキルを磨いていかなければなりません。 効率はどう上げる? データ分析を行う中で、「もっと効率的に行う方法や関数があるだろう」と感じながらも、業務の中では時間がとれないことがあります。学びの時間を構築し、最初は大変でも一度挑戦することが重要です。それを繰り返すことで、最終的な作業の効率化や精度の向上につながります。 多角的視点は? 最後のライブ講義で提示されたクリティカルシンキングのポイントを忘れずに意識しておきたいと思います。多面的に考えることを意識し、様々な人と話し、インプットを続けることが大切です。

データ・アナリティクス入門

複数仮説が照らす未来への一歩

仮説の意義は何? 仮説とは、ある論点に対する一時的な答えであり、課題解決のプロセスではまず「what(課題の特定)」を行い、その後「where(どこに問題があるか)」を考えることになります。 問題点はどこ? どこに問題があるかを検討する際、ポイントは以下の2点です。まず、必ず複数の仮説を立て、いずれかに固執しないようにします。次に、各仮説に網羅性を持たせることが重要です。今回の学びでは、例えば「レッスン内容」「レッスン代金」「立地や日時」「販促方法」といったサービスの各要素をあらゆる角度から洗い出すイメージでした。また、3Cや4Pといったフレームワークに触れることで新たな視点を得ることができました。 仮説の種類は? さらに、仮説には主に2種類があると学びました。ひとつは、ターゲット層の拡大などの結論に関する仮説、もうひとつは問題の原因や解決策を具体的に検討する問題解決の仮説です。後者は「where:問題の箇所を仮定する」「why:その原因を推測する」「how:解決方法を検討する」という順序で考え、筋道を立てる手法でした。 アンケート結果は? 社内で実施する教育後のアンケートでは、解答直後にアプリが提示する円グラフから、何が問題か(what)の部分を大まかに把握することができます。その後、回答者の属性や状況を踏まえ、できるだけ網羅的に「where」を洗い出すために仮説を検討します。4Pの観点では、教育内容、コスト(ここでは時間や労力)、実施方法や時間配分、連絡手段などを考慮した仮説となります。 事前整理の効果は? このように事前に分析の視点を整理しておくことで、設問作成もスムーズに進められ、必要なデータを最初から集めやすくなると感じました。 結論仮説の重要性は? また、業務で用いている仮説の中では、特に結論に関する仮説が重要であると改めて実感しました。直近で実施する意識調査の分析にあたっては、複数の結論の仮説を立て、その理由を深く考えた上で、使用するデータ項目を決定し、最終的に対策案を立案する流れを実践する予定です。最終提出前には、自分の仮説が他の仮説と矛盾しないかも確認し、他者の視点を意識することで、更なる精度向上を目指したいと思います。 実践活用はどう? また、6月に実施する教育後アンケートでは、これまでの気づきを反映し、より実践的な思考ツールとして活用できるよう努めていきたいと考えています。

マーケティング入門

リアルな本音、ここに集結

どうしてヒットした? ある事例から、長年にわたって衣料品の製造販売で培った強みを活かし、マスクやスーツパジャマといった製品がヒットした背景を学びました。時代や社会情勢の変化に伴う顧客ニーズの変動、さらには隠れたニーズの本質を捉え、スピード感をもって製品を市場に投入することや、キャッチ―で分かりやすいネーミングで用途を明示する戦略が功を奏したと理解しました。 本音は掴めたか? さらに、顧客の真のニーズを見極めるための手法として、行動観測やデプスインタビューの有効性を確認しました。ただし、デプスインタビューにおいては、報酬を提示することでかえって本音が引き出しにくくなる可能性がある点を学び、本音を言いやすくするには、事前の雑談を通じて信頼関係を構築することが有効であると再認識しました。また、商品やサービスの真のニーズを探る能力は、日常的な物事への想像を巡らせる癖によって養われるという点も実践していきたいと考えています。 どこにペインを感じる? また、顧客ニーズだけでなく、解決すべきペインポイントの特定も新規事業を検討する上で重要な要素です。事業化を実現するためには、曖昧なニーズではなく、実際にお金を使ってでも解決したいと感じる課題に注目することがビジネスの種になると理解しました。さらに、カスタマージャーニーの作成を通じて、ユーザー目線で体験を観察し、ペインポイントを特定して適切な解決策へと導くことが、事業化のポイントであると学びました。 信頼構築は上手? 実務は必ずしも課題解決型の事業ではないため、ペインポイントの深掘りは難しい面もありますが、自社の強みを生かし、顧客の隠れた真のニーズを探り出す姿勢を忘れずに取り組んでいきたいと考えています。特に、デプスインタビューにおいて報酬提示が本音を引き出しにくくするという点は、これまで気づいていなかった新たな学びとなりましたし、事業推進者が目の前にいるだけで本音が言いにくくなるという現状にも、改めて注意する必要があると認識しました。 やり方は確認した? ・行動観測では、実際に想定顧客の動きを観察し、ニーズを正確に把握することに努めます。 ・デプスインタビュー実施では、顧客の深い本音や改善点を引き出すため、信頼関係の構築に心がけながら取り組みます。 ・カスタマージャーニーの作成によって、顧客のタッチポイントや行動、思考をファクトベースで分析し、実態を正しく把握することを目指します。

データ・アナリティクス入門

ゼロからプラスへ実践で拓く未来

どうして実践は難しい? ありたい姿と現状のギャップを何度も意識しているものの、実際に実践するのは非常に難しいと感じました。その中で、マイナスをゼロにする問題解決とゼロをプラスにする問題解決の違いに注目し、後者ではありたい姿をステークホルダーと共有することが重要という点がとても印象に残りました。デジタル技術が進む現代においては、問題発見力が一層求められる中で、TOBEを構想する力だけでなく、その構想について関係者と認識を合わせる共感力の重要性を再確認する機会となりました。 どの分析で理解する? また、what、where、when、whyのフレームを問題分析に取り入れるというシンプルなアイデアは、これまであまり意識してこなかったため、新鮮な学びとなりました。自分で活用する際も、他の人に説明する際も非常に分かりやすく、実用性が高いと感じています。 ロジック知識はどう? ロジックツリーやMECEのフレームについても、改めて説明を受けることで新たな気づきがありました。特に、層別分析と変数分析のジャンル分けは、普段無意識に行っていた部分が大きかったため、今後は意識的に思考のスイッチングに活用していきたいと考えています。 基本はなぜ大事? さらに、GAiLのセッションを通じて、経営における基本を徹底すること、すなわち凡事徹底の重要性を実感しました。WEEK0で学んだ事例に倣い、慣れや直感に頼らず、都度基本に立ち返って自分の手法を客観的に見つめ直すことが必要だと感じました。 切り口をどう捉える? また、さまざまなフレームワークや切り口が存在することから、情報を学べば学ぶほど実践時にどれを採用すべきか迷うこともあります。しかし、生成AIをパートナーにすれば、自分が直面する課題に対して最適なツールや切り口を模索する際の有力なサポートになると新たな活用方法を見出しました。 改善策は何か? 具体的な今後の改善点としては、まず凡事徹底のために自分が立ち返る教科書として本棚を見直すことから始めます。次に、ロジックツリーの活用については、自分が使用しているアウトライナーの新たな用途として、思考整理に取り入れ、層別と変数の切り替え(国語的分解と算数的分解)を意識して活用していきたいです。さらに、分析を始める前に一度立ち止まり、生成AIとともに最適なツールと切り口を検討することで、より効果的な問題解決のアプローチにつなげられると考えています。

データ・アナリティクス入門

論理で解く!現場課題の4ステップ

問題解決の手順は? 「問題解決の4ステップ」と「ロジックツリーを使った分解思考」が今週の学びの中で特に印象に残りました。まず「問題解決の4ステップ」では、「何が問題か?(What)」を明確にし、「どこに問題があるか?(Where)」でその範囲を絞り込みます。さらに、「なぜ起きているのか?(Why)」で原因を深堀りし、「どうするか?(How)」で具体的な対策を検討する流れを学びました。このフレームワークを用いることで、感覚や経験だけに頼らず、論理的に課題を捉えられると実感しました。 ロジックの整理は? また、ロジックツリーの手法では「モレなく・ダブリなく(MECE)」を意識しながら、問題やテーマを枝分かれさせ、整理する方法が紹介されました。例えば、現場で発生する遅延という問題に対して「人」「資材」「天候」などのカテゴリーに分解し、それぞれを詳細に検討することで、原因の見落としを防ぐことが可能となります。さらに、各要素を深掘りすることで、より具体的な解決策に結び付けられる点が非常に実践的だと感じました。 再現性は保たれる? これらの思考法を現場の課題整理に活用することで、感覚や経験に頼らず、再現性のある改善が実現できると考えています。たとえば、工期が予定よりも遅れている場合には、まず「What:何が問題か?」で遅延の事実を明確にし、「Where:どこに問題があるか?」で特定の工程に絞ります。そして、「Why:なぜ起きているのか?」で人員不足や資材納品の遅れ、天候の影響など原因をロジックツリーで分解し、それぞれに対して「How:どうするか?」の具体策を検討します。 トラブル対応は? 実際に現場で問題やトラブルが発生した際には、まず「何が問題か?」を関係者と共有し、事実を明確にします。その上で、問題のある工程や範囲を「どこに問題があるか?」の観点から洗い出し、ロジックツリーを活用して「なぜ起きているか?」を検証します。原因が複数考えられる場合には、MECEを意識して整理し、各要素に対して「どう対応するか?」という具体策を検討することが重要です。 習慣化は可能? 今後は、毎日の朝礼後など短いミーティングを通してこの4ステップを活用し、現場の問題を見える化・言語化する習慣を身につけたいと考えています。個人としても、業務日報にこのフレームワークを取り入れることで、思考力と実践力をさらに高めていきたいと思います。

「検討 × 手法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right