データ・アナリティクス入門

平均だけじゃ語れない真実

平均値だけで判断? 平均値は、データのばらつきを反映しないため、平均値近辺に多くの数値が存在するとは限らず、両極端な数値が混在している場合もあります。そのため、平均値だけに頼ると正確な分析が難しくなることがあります。 標準偏差はどう見る? 標準偏差を加えることで、数値の分布やばらつきを把握することができ、平均値と合わせてデータの傾向を見極めるのに有用です。実際、ある施策の効果検証で前後の数値を単に比較した際には、有意な変化や傾向が見受けられず困惑した経験があります。しかし、標準偏差を算出して分布図に落とし込めば、より明確な傾向が掴めたかもしれないと感じました。 代表値の使い分けは? また、代表値の使い分けにも工夫が必要です。単純平均の他に、値ごとに重みを付けた加重平均、成長率や比率を評価する際に有効な幾何平均、そして外れ値の影響を受けにくい中央値を適宜使い分けることで、より正確な傾向分析が可能となります。 具体例はどう見る? たとえば、男性の育児休業取得日数については、年間の平均値だけでなく、外れ値として極端な値が含まれる場合には中央値を用いて経年の傾向を把握します。さらに、法改正の影響で急増している取得率の増加率を幾何平均で算出し、次年度以降の予測やKPIの設定に活かすといった工夫が重要です。 現業務を再確認? 現在の担当業務においては、従業員の健康診断データ、施策実施前後の変化、女性管理職比率の推移、男性育休取得率の推移など、今回学んだインパクト、ギャップ、トレンド、ばらつき、パターンといった視点およびグラフ、数字、数式といったアプローチを用いることで、見落としがちな傾向や変化を改めて確認することが求められます。

マーケティング入門

良い提案も魅せ方次第!成長のヒント

どうして売上が伸びない? キンレイが顧客の声に応えて冷凍うどんのアルミ容器を廃止したものの、売上は期待通りに伸びませんでした。しかし、お水が不要なうどんという新たな切り口で魅せることで、大幅な売上アップに成功しました。これは、同じ商品であっても、ニーズに合致したものであっても、いかに効果的に魅せるかによって顧客の反応が大きく変わることを示しています。 魅せ方の工夫は? 魅せ方を整理する上では、比較優位、適合性、わかりやすさ、可視性といった要件が参考になります。特に、比較優位やわかりやすさの観点からは、記憶に残るネーミングや効果的なキャッチコピーが重要だと感じました。また、新規性のある商品を市場に出すことは歓迎すべきことですが、その過程で競合が集まってくるため、常に顧客への訴求を忘れずに差別化に努める必要があります。普段、ネットショッピングなどで商品が売れていない理由を考えることも、マーケティング思考を養う上で大切です。 どう説得するの? 私はファイナンス部門に所属しており、社外では出資先から魅力的な投資元として認識され、共に成長していくことが求められています。一方、社内では上司や役員にリスクを伴う出資の理由を納得してもらう必要があります。今回の学びを通して、どんなに良い提案であっても、魅せ方が不十分であれば成果に結びつかないことを痛感しました。今後、自分の事例に適用できる具体的な視点についても、調べていきたいと思います。 効果的な訴求方法は? 実際のマーケティング現場や、上司や役員への説明の場面など、さまざまなシーンで人に訴求する機会があると思います。皆さんが日頃から工夫している魅せ方のコツやアドバイスがあれば、ぜひ共有していただきたいです。

デザイン思考入門

共感から始まる挑戦の教室

なぜ共感が大切? 高専教育におけるデザイン思考の実践応用が具体例として示され、プロジェクトベース学習の改善の流れがとても分かりやすく整理されていました。まず、学生が実際に課題に取り組む様子を観察し、どこでつまずいているかを体験的に理解する「共感」のステップから始まります。その後、「2年生のプログラミング初学者がエラーメッセージに直面したとき、原因の特定が難しく挫折感を感じている」という具体的な課題定義につながり、その問題に対する多角的なアプローチとしてSCAMPER法を活用する発想へと発展させています。 試作とテストの効果は? さらに、簡易的なデバッグガイドやチェックリストを作成し、小規模なクラスで試用することで、「試作」と「テスト」のサイクルが迅速に回されました。実際の授業では、このプロセスを通して、教員が見落としていた細かい困難点や、学生が質問しづらい心理的ハードルが明らかになり、具体的かつ効果的な改善策を議論できる環境が整えられました。 多角発想はどう役立つ? また、従来の一方通行の解説にとらわれず、例えばエラーメッセージを視覚的なフローチャートに変換するなど、多角的な発想が功を奏しました。この結果、学生同士が自然に教え合う雰囲気も生まれ、クラス全体の協力体制が強化されるという予想外の効果も確認されました。 試作の意義を感じる? さらに、デザイン思考における試作の意義が改めて実感されました。実物に近い試作に限らず、デザイン画や説明動画など、さまざまな形でフィードバックを得ることが可能です。視覚的な印象や使用シーンの具体性を重視するフィードバックは、教材の改善に大いに役立ち、実践を通じた気づきを促す重要な要素となっています。

クリティカルシンキング入門

試行錯誤から生まれた分析の智恵

データ加工の秘訣は? データの加工においては、分布の見え方が刻み幅によって大きく変わることを実感しました。一部の刻みやすい部分だけに頼らず、あらかじめ仮説を立てた上で様々な試行錯誤を行いながら加工することが重要だと感じています。また、加工結果を伝える際には、グラフなど視覚的な資料を用いて相手の注意を引く工夫が必要だと学びました。さらに、MECEの手法として、層別、変数、プロセス分解という大きく3つの方法があることも新たな発見でした。 プラン策定の視点は? ビジネスプランの策定にあたっては、まず対象期間を明確に定義し、その期間内に成長する領域をあらゆる角度からMECEの観点で分解することが効果的だと考えます。仮説を基に分析を進めると、具体的なポイントが見えてくるでしょう。特に、層別の分解では、単に分かりやすい切り口を選ぶのではなく、意図を持った切り口にすることで、伝えたい内容をより明確に伝えることができ、相手に納得してもらいやすくなります。また、会社から得られる数字だけに頼らず、必要な要素を漏らさず情報を収集する姿勢も重要だと感じました。 レポート作成の狙いは? 日々のレポート作成や本質を押さえたアクションを行う際には、まず要素を思い描き、書き出すこと。そして、分解し、他の切り口がないかを常に考え直すことで、ポイントを簡潔かつ分かりやすく伝えることができると実感しました。 工夫の実践例は? 加工や切り口の工夫は、経験や場数、センスが求められるものです。実際の業務でどのように活かされているのか、または自分自身や家族における意思決定の場面で役立っている事例についても知ることができれば、さらなる学びにつながると感じています。

マーケティング入門

顧客の潜在ニーズを掘り起こす秘訣

成功のための顧客理解とは? 今週の事例では、顧客の隠れた真のニーズを深堀し、自社の強みを活かした製品を製造・販売することがヒット商品の成功要因だと実感しました。キャッチーなネーミングも販売を後押しする重要な要素です。また、最後の動画で「ビジネスチャンスのタネがなくなっている」や「今後AIが進化し、仕事がなくなるのでは?」といった懸念についても触れられていました。私も同様の懸念を抱いていましたが、動画を通じて、環境が変化すれば人々のニーズも変化し、そこにビジネスチャンスが生まれることを知りました。今後、顧客視点に立ち、敏感にニーズを察知し、深堀することの重要性を改めて感じました。 顧客のニーズをどう捉える? 「顧客自身が欲求に気付いていないため、単純な質問ではうまくいかない」という点は特に印象に残りました。実際にツール開発のための要望アンケートを提案していましたが、うまくいかない理由が手法の誤りにあると気付きました。顧客のニーズをヒアリングやアンケート、グループインタビューだけでなく、行動観察といった多角的な視点から捉えることが重要だと感じました。 次のステップで何をすべき? 今後取り組みたい具体的なアクションとしては、以下の点に重点を置きます。 - 常に「なぜそのように思うのか?」や「本当にそれが物事の本質なのか?」を考える癖をつける - 会社が提示する自社の強みについて、他にもないかを考える - 社内で議論し、新しい付加価値を顧客に提案する - 自社商品のカスタマージャーニーを実践する - 他業種のニーズを考え、自分自身で分析する癖をつける 以上のアクションを通じて、顧客視点を持ちつつ、自らの分析力を高めていきたいと思います。

マーケティング入門

訪日観光アプリ成功の鍵を探る

観光案内アプリのセグメンテーションとは? 観光案内アプリの事業化を検討する過程で、特に注意が必要だと感じたのは「セグメンテーションの切り口」です。訪日外国人旅行客を優先すべき顧客層として仮定しましたが、最終的には国内旅行者にも対象を広げたいと考えています。このとき、以下の変数を明らかにし、「購買行動に差が出る切り口を選ぶ」ことが重要だと学びました。 - 人口動態変数(例:年齢や性別) - 地理的変数 - 心理的変数(例:趣味、志向) - 行動変数(例:使用頻度) 6R基準でのターゲティングの重要性 ターゲティングについては、6Rという評価基準を新たに知りました。特に、Rankでは市場規模に加え、イノベーターやアーリーアダプターといった火が付きやすい層を選ぶ必要があると再認識しました。 - Realistic Scale - Rate of Growth - Rival - Rank(優先順位、影響力の強さを考慮) - Reach - Response これらの基準は、市場の魅力と自分たちが勝ち残れるかどうかを比較しつつ選びます。 データを基にしたセグメンテーションプロセス セグメンテーションはデータに基づいて行います。まず、「購買行動に差が出る切り口」を仮説立てし、それに応じてデータを取得します。その後、ターゲティングやポジショニングを以下の手順で進める計画です。 1. セグメント別の市場規模、成長率を推定する 2. 推定結果に優先順位をつける 3. 最も優先する市場について競合との差別化を仮決めする(ポジショニング) 4. 実際に検証する この一連のプロセスによって、より的確で効果的なアプローチが可能になると考えています。

デザイン思考入門

受講生のプロト挑戦と成長記

ユーザーの反応はどう? ユーザーからのフィードバックをもとに改良を重ねることが、成果向上の鍵だと実感しました。そこで、ユーザーの反応をスピーディーに得る手法を検討する必要性を感じています。具体的には、デザイン画や模型など、素早く形にできるプロトタイプの作り方が効果的です。フィードバックは、見た目、機能、使用感という3つの観点で捉えることができ、何を試したいのか、何を確かめたいのかを明確にして適切な手法を選ぶことが重要と感じました。 生成AIの可能性は? また、多くの受講生が生成AIを活用していることにも驚きました。ビジュアル化の面で、今後は私自身もこの技術を積極的に活用していきたいと思っています。 プロトタイプの意義は? 私自身の業務に当てはめると、扱う教材をどのように現場で使っていただくかを検討する役割があります。例えば、現場の指導提案を行う際、いきなり詳細な資料を持ち込むのではなく、まずはプロトタイプとして提案内容を形にし、意見を求めたり実際に使用してもらったりすることで、改善の余地を探ろうとしています。 プロトタイプの罠は? ただし、プロトタイプにこだわりすぎるとスピード感を失い、作成したものに固執してしまうリスクもあります。私自身は、商品開発の立場ではないからこそ、営業、マーケティング、開発といった異なる部門と連携し、情報を共有することが、よりよい企画へとつながると考えています。 十分な準備はどう? 今回の課題に取り組む中で、これまでの積み重ねがプロトタイプの精度を大きく左右することを痛感しました。自分なりに検討はしたものの、他の受講生に比べると十分な準備ができておらず、反省すべき結果となりました。

データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

アカウンティング入門

運動成績に学ぶPLの極意

大局をつかむには? 損益計算書(PL)の読み方について学び、細かい項目に注目するよりは、大局をつかむことが大切だと理解しました。具体的には、売上や利益の動向に注目して読み解く方法がポイントです。特に、以下の3点に注意することが推奨されました。 売上高はどう見る? まず、売上高では、過去からの推移に目を向けることが重要です。次に、5つの利益においては、売上高に対する比率やその推移、各利益間の差に着目する必要があります。さらに、比較対象として、過去実績や業界平均、自社の目標値などを常に念頭に置くと、より実態に即した分析ができることを学びました。 価値はどこに? また、損益計算書を「運動成績表」に例える表現には、非常に分かりやすく感銘を受けました。儲けを大きくするためには、どのような価値が付加されているか、また儲けの源泉が何であるかを明確に把握することが鍵であると感じました。これからは、価値を意識しながら損益計算書を読むことを習慣化していきたいと思います。 実践はどう進む? さらに、Week2で学んだ内容を実践するために、自社の損益計算書を実際に読み、自社の経営目標の達成度を確認してみるつもりです。その結果をもとに、同業他社との比較から、自社が直面している課題や社会情勢、内部目標設定の問題点、また競合の動向などを分析していく考えです。 日常ではどう対応? 一方で、日常業務においてなかなかPLに触れる機会が少ないため、理解を深めるのが難しいと感じています。同じような課題をお持ちの方がいらっしゃる場合、どのような方法で日々の業務に学びを活かし、知識の定着を図っているのか、ぜひ教えていただけると幸いです。

アカウンティング入門

数字の裏に潜む儲け方謎解き

損益計算から何が見える? Week03では、損益計算書(P/L)を基礎として、利益構造をより深く理解する視点を学びました。売上高は事業規模、営業利益は本業の強さ、経常利益は通常活動全体の実力、そして当期純利益は最終的な稼ぐ力として捉え、それぞれの役割の違いを整理しました。また、単一の数字だけを見るのではなく、前年比較や他社比較といった対比を通して傾向や相違点を読み取る重要性も確認できました。 数字はどう反映される? ある事例では、提供価値の違いが原価率や販管費構造、さらには利益の出方にどのように反映されるかを具体的に示していました。値上げのリスク、販管費の軽重、原価率の差など、P/Lの数値が事業活動の性質と密接に対応している点を再認識することができました。 業界で何が違う? さらに、異なる業界のP/Lを比較する中で、メーカーでは売上原価が大きく、IT業界では販管費が大きくなりやすいなど、業態ごとの利益構造の違いにも触れました。こうした学びを通して、企業のP/Lは「儲け方の違い」を可視化しており、提供価値とコスト構造の整合性によって本質的な経営判断が読み取れるという理解が深まりました。 学びをどう活かす? 今回の学習を踏まえ、まずは身近な企業のP/L構造を提供価値と利益の出方の関係から読み解いてみたいと考えています。先日、業界関係者と話した際に利益率の高さに驚いた経験をきっかけに、その背景をしっかりと理解することを目標としています。実際に対象企業の損益計算書を確認し、原価率や販管費の構成、研究開発費の位置付けなど、業態特有の利益構造を整理することで、業界の「儲け方」をより実感として掴んでいく予定です。

データ・アナリティクス入門

仮説が照らす学びと挑戦

仮説の意味は何? 仮説とは、ある論点に対する仮の答えを意味します。仮説を立てる意義としては、検証マインドを高め説得力を増すこと、関心や問題意識をより明確にすること、物事の進行スピードを早めること、そして行動の精度を向上させることが挙げられます。 複数仮説の意義は? また、仮説を考える際には、複数の仮説を同時に立てて決め打ちしないこと、そしてその仮説同士が異なる切り口で網羅的に考えられていることが重要です。さらに、フレームワークを活用することで、自分の思考の幅を広げ、複数の視点から仮説を検証する機会が得られます。この点では、各仮説の正しさそのものよりも、いくつかの異なる切り口を持つことが非常に大切です。 検証方法はどう? 仮説の検証方法としては、既存のデータを活用して確認する方法や、新たにデータを収集して比較検証する方法があります。比較のためのデータ収集においては、都合の良い情報だけに偏らないよう注意する必要があります。 営業での仮説は? また、仮説は営業の現場においても有用に活用できます。例えば、売上の進捗をマネジメントする上で、現状の売上に対して問題はどこにあるのか、原因は何か、そしてどのように解決すべきかといった点を明確にするために、問題解決の仮説は大いに役立ちます。こうした仮説をもとに施策を考え、実行し、その結果をデータをもとに定期的に分析することで、施策の軌道修正を行い、着実な成果を導くことが可能になります。 フレームワーク活用は? 最後に、従来は活用機会が少なかったフレームワーク、たとえば3C分析や4P分析を実際にどのように業務に取り入れているのか、その事例についても知見を得たいと考えています。

リーダーシップ・キャリアビジョン入門

対話で紡ぐ感謝と成長の軌跡

評価以外の伝え方は? フィードバック面談は、単に評価を伝える場ではありません。まず一年間の業務遂行に対するねぎらいや感謝の気持ちから始め、その上で良かった点と改善すべき点を明確に提示します。結果については、具体的な事例を交えながら伝え、相手が納得して理解できるよう導くことが大切です。 対話の本質は何か? この面談は人と人との対話であり、感情面が大きく関わるため、単なる論理的な説明だけでは十分でない場合もあります。相手の気持ちに寄り添いながら、状況を理解してもらえるようなコミュニケーションを心がけます。 リーダー像はどう変わる? 自身が目指すリーダー像は、学ぶ前と大きくは変わっていません。しかし、リーダーシップやエンパワメント、仕事の振り返りの基本を学び、実際に実践することで、理想に近づくための一歩を踏み出すことができました。 学びをどう活かす? また、今年度はキャリア面談を3月中に実施する必要があるため、今回学んだ内容を積極的に活かしていきます。事前に各メンバーの一年間を振り返り、伝えるべき内容を構造立てて整理したうえで、まず感謝とねぎらいの気持ちをもってポジティブな評価を伝えます。改善点については、より具体的に指摘し、相手が理解し納得できるよう努めることで、次へつながる前向きな面談を実現します。 評価の相違は何? さらに、各メンバーの振り返り面談シートと評価シートを見直し、本人の自己評価と会社側の評価がどの点で一致し、どの点で異なっているかを分析します。本人の自己評価、会社からの期待、客観的評価、そして今後の期待と支援内容を項目ごとに整理し、具体的な面談の進め方を構築してから実際の面談に臨む予定です。
AIコーチング導線バナー

「実際 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right