クリティカルシンキング入門

「データ分解術で見つけた新たな視点」

情報を分解する重要性は? 情報を分解することによって、情報の解像度が向上します。データを加工するときには、以下の点に注意すると良いです。 まず、与えられた表をそのまま見るのではなく、全体を把握するために自分で欄を増やす工夫をしましょう。さらに、絶対値だけでなく相対値も見ることが重要です(比率に注目する)。数字はグラフにできると、その情報の威力が増します。「眼に仕事をさせる」ことがポイントです。 データの区切り方で何が変わる? データをどのように区切るかによって、解釈が変わってきます。刻み幅によって、分布の見え方が変わるため、どのような分け方が良いかをいくつか試行錯誤する習慣を身につけることが大切です。どのくらいの刻み幅にすれば良いかだけでなく、どのように区切ると意味を持つかを仮説として考えることが重要です。また、分解の際には多様な切り口を考えてみることが必要です。ある切り口では特徴的な傾向が見えなくても、別の切り口では見えることがあるため、複数の切り口で分解してみることが有益です。 まずは「全体」を定義することが重要です。 セミナー結果の詳細分析法は? セミナーや研修の参加者アンケートの結果を分析する際には、表面的な結果だけではなく、"when"、"who"、"how"など、多くの切り口から分解して内訳をしっかり確認します。2つ目、3つ目の傾向がないか意識しながらデータ分析を行うことが求められます。 業務報告はどう改善すべき? 月次の業務報告作成の際には、集計したデータをグラフ化し、表の状態では見えなかった傾向がないかを確認するようにします。データをどこで区切るか、どのように切ると意味を持つ切り方になるかを仮説立てて試してみることが大切です。 今年度のセミナー内容を企画・提案する際には、過去数年分のテーマと参加者アンケート結果を比較して、どのようなテーマがどの属性の参加者に反応が良いのかを分析します。その結果をもとに、今年度の企画案を作成します。また、業務報告を作成する際には、これまで毎月固定の項目の傾向分析・報告だけを行っていましたが、次月以降は新たな切り口での分析を1つ以上追加して報告する予定です。

戦略思考入門

部下も納得!目標設定の秘訣

会議で何が決まる? 多くの企業では、期初会議などの場で新しい施策や目標が掲げられることが多いですが、捨てる方針や優先順位を明確にする発表は稀です。この結果、部下が優先順位を把握できずに困惑することがあります。上司は客観的な視点やデータをもとに、明確な指示と評価基準を設定し、追跡評価を行う必要があります。 視点の根拠は? 客観的視点を提示すると以下のようになります: 数字の背景は? 1. **単位時間あたりの利益率** 販売活動に関する業務では分かりやすいですが、カスタマーサービス(CS)向上や開発業務では試算方法を考慮する必要があります。 2. **顧客(企業)の成長、将来性** 利益だけでなく、その業界や取り扱い製品の伸び率を判断材料にします。 3. **企業文化やキャラクター** 良好な企業文化を持つ顧客とは関係を継続しますが、そうでない場合は時間や精神的負担を考慮し、関係を見直す必要があります。 業務選定の理由は? 医療機器の取り扱い業務においても優先順位の検討が重要です。具体的には以下の場面で検討が求められます: 販売支援の必要は? 1. **販売支援** 臨床的なサポートが期待される装置プレゼンテーションやデモンストレーションは、営業推進部で完結できるような仕組みや教育を整備します。 学会支援の意義は? 2. **学術活動** 学会発表支援や実験サポートにおいては、顧客のキャラクターや将来性、そして企業としてのメリットを考慮し、優先順位を付けます。さらに、有償化を検討します。 説明方法はどうする? 3. **取扱説明** 製品装置が多様であるため、無差別曲線を利用してサービスとアプリケーションでバランスを取り、組織や役割を明確にします。これにより、社員の理解を得るとともに、顧客にも説明し納得してもらうことを目指します。例えば、取扱説明の影響が少ない装置には教育を行い、合格者にはバッチを提供するなどの工夫をしています。 効果はどのくらい? これらのプロセスを通じて、業務の効率化と顧客満足度の向上を図ります。

データ・アナリティクス入門

結果から逆算!あなたの成長戦略

問題解決はどう進む? 問題解決の方法として、「問題をステップに分け、結果(アウトカム)から逆算して分析する」アプローチは、限られた時間内で根本原因を明確にし、的確な打ち手を導くために非常に再現性の高い手法です。まず、期待する成果と実績値との差分を定量的に示すことで、組織内で認識を統一し、議論を「ズレの大きさ」に集中させます。次に、売上や費用などの成果指標を構成要素ごとにブレークダウンし、測定可能なKPIに紐づけることで、どの要因がどれだけの影響を及ぼしているかを明確にします。 分析はどこから始まる? 続いて、結果側から検証する「バックキャスティング」の手法を用い、大きく乖離している指標から原因を順次掘り下げていきます。得られた要因に対し、具体的な仮説設定とデータによる検証を行い、優先度の低い仮説は省くことでリソースの無駄を防ぎます。最終的には、検証済みの根本要因ごとに、効果と実行容易性を考慮したマトリクス評価に基づき、短期および中長期の施策を整理してアクションプランに落とし込むことで、関係者の合意形成と継続的な改善につなげることが可能です。 損益分析で何が分かる? また、事業別の損益実績表をもとにした問題解決にも、この「結果から逆算し要素を分解する」思考法は非常に有効でした。各事業の利益ギャップを数値で可視化し、売上要因や費用要因をツリー化して寄与度を算出することで、インパクトの大きい項目を即座に特定することができました。さらに、事業横断の共通課題と個別事業の固有課題を切り分け、優先順位を明確にした改善策を示すことで、部署間で共通のフレームで議論ができ、PDCAサイクルのスピードも向上しました。 改善策はどう組み立てる? 今後は、四半期ごとに提供される事業別の詳細データを活用し、売上、費用、各KPIを要素分解することで目標との差分を定量化し、根本原因の特定を進めます。その上で、次の四半期において改善効果が大きい施策(価格見直し、顧客セグメント別プロモーション、コスト構造改革など)を優先順位付けし、スケジュールと責任者を明確にしたアクションプランを提案していきたいと考えています。

データ・アナリティクス入門

納得するだけではなく、行動に移そう!

ストーリーの重要性は? 今回の講義で最も印象に残ったのは、「やみくもに分析しない。ストーリーが大事」という点です。今まで意識していなかったwhereで傾向を掴み、どこまで掘り下げられるかという部分に気付かされました。whereを浅くしすぎるとwhyがまったく意味をなさなくなるため、問題がどこにあるのかという点にもしっかり目を向けたいと思います。 「わかる」と「できる」の違い 全体の講義を通じて感じたことは、講義や動画の内容に対して納得できる部分が多々あったということです。毎回わかっているつもりでしたが、実際に演習をしたりグループワークで意見を交換したりすると、うまくいかない場面が多いことに気付きました。「わかる」と「できる」は全然違うということを改めて実感しました。 賃金制度見直しのポイント 来期に向けた賃金制度の見直しに際して、以下のポイントを意識して分析したいと思います。まずは①自社の賃金制度のどこに問題があるのか、次に②なぜそのような問題が発生しているのか、最後に③どうすれば理想の姿に近づけるのかです。これらを講座で学んだことを活かし、具体的な賃金制度案を示していきたいです。 仮説からのデータ集め方とは? また、自身および一緒に働くメンバーに対しては「仮説➡データ集め➡検証」という明確な流れを意識することが少ないため、今回の学びを共有し、効率的・効果的に課題解決のステップを踏めるチームにしていきたいと考えています。 学びを日常に活かすには? チームで共有するためには、まず自分がしっかりと理解し、使えるようになることが大切です。学んだことがまだ全然身についていないため、まずは学んだ内容をもう一度振り返り、ポイントを整理し、日常業務や生活の中で1日1回は必ず実践することを意識したいです。特に「仮説を網羅的に立てること」、「何と何を比較すれば得たい結果が得られるのか、比較対象を設定すること」、「条件を揃えて比較すること」といった点について意識しながら日々考える習慣をつけたいです。

クリティカルシンキング入門

データ解析で見える新たな地平線

解像度の高い情報化方法は? 単なる数値データを解像度高く意味のある情報にするための方法について考えました。まず、データの加工では、比率を見たり加算したりとひと手間加えることで、情報を活用できる状態にします。また、グラフ化することで、数字では見えづらかった傾向を視覚化し、理解を深めることができます。 データ分解のポイントは? データの分け方については、グラフ化した後にどの粒度で分けるかが重要です。機械的に分けるのではなく、仮説を持って複数のパターンを試行錯誤することで、有意義なデータを導き出すことができると考えています。分解のポイントとしては、事柄を「いつ、誰が、どのように」といった複数の視点から見ることが重要です。分解した結果、傾向が見えない場合でも、その視点では傾向が見られないという意義のある結果になります。さまざまな切り口で分解し、一度立ち止まって本当に正しいのかを考えることも大切です。 MECEに基づく問題解決とは? 問題解決のステップを踏む上では、MECE(モレなく、ダブりなく)を意識します。MECEの切り口には、全体を定義して部分に分ける層別分解、事象を変数で分ける変数分解、ある事象に至るプロセスで分けるプロセス分解などがあります。これにより、モレなく網羅的な分析が可能になります。 フィードバックの重要性 最後に、物事をMECEを軸に分解して考える際、考え方の偏りによってモレなくという部分が満たせなくなることがあるため、自身の考えの癖を常に意識し、他者からのフィードバックを受けて手法の精度を高める必要があります。また、分析結果が仮定と近い場合でも、すぐに結論付けず、一歩踏み止まって再考する習慣を大切にしたいと考えます。 システム運用の問題予防はどうする? システム運用における問題予防の観点では、膨大な数値データの中から意味を見つけ出し、データを扱う方法を変えていくことが重要です。H/W、M/W、NWの性能レポートや監視ツールのデータから、予防保守という視点で今後起こり得る問題の傾向を掴むようにデータを活用していきたいと思います。

データ・アナリティクス入門

目的と仮説で切り拓く未来

比較の本質って何? これまでのデータ分析において、私は「分析の本質は比較である」という点を十分に理解していなかったと感じています。適切なデータ選定ができず、チーム内で議論する際にも目的が曖昧であったため、集合データをそのまま使ってしまい、結果として具体的な結論に至らなかったケースが多くありました。 仮説は本当に必要? また、分析はあくまで目的を達成するための手段であるにもかかわらず、そのプロセスにおいて「仮説を立てる」という基本的なステップを十分に意識せずに進めてしまっていたことも大きな問題でした。 分析準備は万全? こうした経験から、まずデータ分析に入る前の準備段階を丁寧に実施することの重要性を痛感しました。具体的には、分析の目的を明確にし、仮説をしっかりと立てること。そして、分析の途中で常に最初の目的に沿って進んでいるかを確認する習慣が必要であると感じています。 依頼目的は明確? 業務の現場では、依頼元が提示する抽象的な目的に基づいて競合や市場の動向、新たな開発分野の抽出などが求められる中、漠然とした依頼内容のままで分析を進めてしまうケースがあります。その結果、得られたデータが本当に必要な情報を反映しているのか疑問が残る場合があり、依頼元側も求める結果が得られていないと感じることが少なくありません。 質向上の秘訣は何? 今回学んだ内容は、まさにこうした状況で活かすことができると考えています。相手が何を知りたいのか、抽象的な目的を具体的に落とし込み、既知の情報などを基に仮説を立てることにより、アウトプットの質を向上させられると実感しました。また、個人としてだけでなく、チーム全体で取り組む際には以下の点を共有し、実践していくことが重要です。 チーム内の確認はどう? まず、分析の目的を明確にし、チーム全体で統一した見解を持つこと。次に、分析前に十分な仮説を立てること、現状を正確に把握すること、分析対象のデータが適正かどうかを確認すること。そして、分析の途中で常に最初の目的に沿っているかどうかをチーム内で確認し合うことが大切だと考えています。

クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

クリティカルシンキング入門

MECEで問題をスッキリ解決する方法

物事を分解する学びの重要性とは? 物事を分解する方法について学んだことが非常に有益でした。まず、全体像を明確に定義し、目的に沿って切り口を設定し、MECE(漏れなく・ダブりなく)の原則を用いて事象を分解します。これには、「層別分解」、「変数分解」、「プロセス分解」の3つのパターンがあります。 分解手法の具体例をどう活用する? 層別分解では、「年齢別」、「性別」、「季節別」といったように、特定のカテゴリーごとに事象を分けます。変数分解では、「売上=客単価×客数」のように、事象を構成する要素に分解します。プロセス分解では、ある事象のプロセスを詳細に書き出し、そのどこに問題があるのかを分析します。 MECEが導く次の一手は? 分解する際には、異なる視点が混在しないよう注意し、まずは試みてみることが重要です。たとえ分解した結果、特筆すべき点が見つからなかったとしても、それは「ここには差がなかった」という価値があり、他の観点での分解につなげることができます。失敗と捉えず、次の行動に繋げることが大事です。 これを売上分析に応用すると、例えば「年齢別」、「性別」、「季節別」に層別分解したり、「売上=客単価×客数」という変数分解を用いたり、プロセスの中の問題点を探るプロセス分解が有効です。 DX人材育成にMECEはどう役立つ? また、DX人材育成に関する施策を進める際の根拠としても使えます。例えば、社員のデータ活用率を上げることを目的に、現状を把握し、MECEを活用して問題点を明確にすることで対策を立てることができます。 意思決定の効果をどう高める? 意思決定時には、情報をMECEで分類し、優先順位を決める手法が活用できます。これにより、どの情報を基に判断すべきかが明確になります。また、プロジェクト進行中に意見が割れた際には、目的を再定義し、網羅的に議論ができているか確認することで、考慮漏れがないかをチェックすることができます。 このように、MECEの原則を用いることで、さまざまな問題や課題を効果的に分解し、具体的な対策や判断を導き出すことができます。

データ・アナリティクス入門

定量データとロジックツリーで解決策を磨く方法

解決策を考える際の注意点は? 課題を与えられた際には、まずどのように解決するかに意識が向きがちです。その結果、【what】や【where】の考察が後回しになってしまうことがあります。この講義を通じて、現状と理想の姿とのギャップを定量的に把握する重要性を学びました。具体的な数値が示されているにもかかわらず、それを使わずに仮説を立て、解決策を考えていた自分に気づくことができ、とても良かったです。 新たな思考法は役立つのか? さらに、ロジックツリーの活用方法についても新たな知見を得ました。通常、条件を先に考え、その条件に合うアイデアを生み出そうとする方法を取ることが多いですが、具体的な打ち手を先に考え、その後条件に当てはまるものを選ぶアプローチが新鮮でした。このような思考法があると知り、非常に役立ちました。 理想と現状のギャップを埋めるには? 顧客との対話においても、理想の姿やあるべき姿の合意を得て、現状とのギャップを埋めていくことが重要です。【what】や【where】を考える前に、まずあるべき姿や望む姿を明確にする必要があります。採用活動においては、人材とのマッチングを図るために具体的な数値に落とし込むことが少ないですが、目標を見失わないように定量データでコンセンサスを取ることを忘れないようにしたいです。また、大きな目標の上にKPIとしての数値目標を立てることも重要だと感じました。 どのようにアイデアを整理する? さらに、用件定義を行った上で解決策を考える際に行き詰まった時には、先にロジックツリーを用いて要素を分解し、その後要件に当てはまるものを選ぶという方法も有効だと分かりました。 1. 顧客との会話の中で都度目標の確認を行う。 2. KPIを設定する。 3. 必ず現状とのギャップを考える。 4. ギャップの原因やボトルネックを調べるために定量データを活用する。 5. アイデア出しで行き詰まったら、ロジックツリーを使ってアイデアを並べ、要件に当てはまるものを選定する。 これらのポイントを念頭に置き、今後の業務に活かしていきたいと考えています。

クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

データ・アナリティクス入門

未来をひらく振り返りの一歩

なぜ複数仮説を作る? まず、目的を常に意識し、その目的に合わせた仮説を複数持つことが基本です。データは膨大な量があり、目的に沿った仮説がなければ、どのデータを選ぶべきかで躓く可能性があります。また、ひとつの事象にとらわれやすい傾向がある中で、複数の視点を持つことが他の可能性を閉ざさないためにも大切です。一つに決めつける心理を俯瞰して見直す努力が求められます。 どう仮説を具体化する? 次に、仮説の立て方は目的に応じたアプローチを取ることが必要です。時間軸、内容、結果からの推論を重視する場合もあれば、問題点の洗い出しから解決策を探る場合もあるでしょう。ビジネスの現場では、結論から入ってしまうと失敗や時間のロスにつながることが多いため、常に仮説思考を持ち、問題意識を大切にしてスピード感を保つことが重要です。 なぜ原因を掘り下げる? 過去の原因を十分に掘り下げ、問題解決につなげることで自社の行動を改善していくとともに、得意先と相互に利益が得られる関係、いわゆるWin-Win体制を作ることが肝要です。これらはすべて、ビジネスにおける成功へとつながる重要な視点です。 スペック提案の落とし穴は? 特に、自社製品・サービスの販売においては、製品のスペック提案に陥りがちです。スペックはあくまで製品の中身に関する情報であり、それが直接ユーザーのベネフィットに結びついているとは限りません。どのような利点があるのか、どんな状態で使用されるのか、また利用する相手はどのような人物なのかを常に予測し、仮説を立てながら動くことが大きな変化を生むと実感しています。 顧客視点でどう判断? まずは顧客起点で、自社製品がなぜ選ばれるのか、または選ばれないのか、その傾向を把握することから始めます。どこで、どのような時に製品が購入されるのかを理解した上で、より良い状況にするための複数の仮説を立てます。そして、その仮説に基づいて調査、分析、データ収集を行い、複数のプランを立案することで、会社としてどの方向に進むべきかの選択肢を明確にし、成功確率を高めることができると考えています。

データ・アナリティクス入門

学びを実践へ!クロス集計から脱却する方法

業務に手法を活かすには? これまでの学びを通じて、「これは使える」という手法を早速業務に活用してみました。しかし、総合演習では「どれを選択するのか」を考えたとき、これまでの学びがまだ身についていないことを実感しました。また、分析に際してクロス集計に依存している自分の癖にも気づきました。他の手法は示唆されれば思いつくものの、依然としてクロス集計に頼ってしまいます。せっかく学んだものを生かし切れていないと感じ、今後は意識していろいろな分析手法を活用する必要があると痛感しました。数をこなすことでしか選択肢の幅を広げることは難しいと学べたことも良かったと思います。 プロセス分解で何が変わる? 問題の原因を明らかにする際にはプロセスに分解することが重要であると気づきました。当たり前のことですが、自分ではそれができていないという発見がありました。また、経験に基づいた仮説を決め打ちしてしまう癖があることにも気づかされました。プロセスに分解する利便性と、その方法が他者への説得力につながるメリットを業務における実績分析でも生かしていきたいと考えています。具体的な手法として紹介されたA/B分析は既に使用していたものの、それをA/B分析と認識していなかったため、目的や仮説設定、検証の項目が曖昧でせっかくの検証結果を生かし切れていなかったと思います。 需要縮小期にどう対応する? 私の扱う製品は急激な需要縮小期を迎えています。そのため、よく「時代の流れ」として片づけられることが多く、そこで分析が止まってしまっていました。しかし、本当にそれだけが原因なのでしょうか。私は「なぜそうなったのか」をプロセスに分解し、正しく理解することが解決策を得るうえで重要な鍵であると考えるようになりました。幸い、過去の業界・当社の実績データはあるので、まずはそれを改めて分析しようと思います。「時代の流れ」以外の要因がないかを探し、その要因に対処することで売上に貢献できるのではないかと考えています。決め打ちせず、様々な選択肢を探ることで、今よりも良い施策を打てるかもしれないと希望を持っています。

「結果 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right