クリティカルシンキング入門

データ分析の力で見えない答えが見えてくる

分解という手法を学ぶ 与えられたデータをどのように活用するか、数字を味方にする「分解」という手法を学びました。情報を鵜吞みにするのではなく、手を動かしグラフ化するなどの簡単な工夫で、新たな分析・類推の元となることを再認識できました。 分解のポイントとは? 分解の方法にはいくつかのポイントがあります。基本として、MECE(モレなく、ダブりなく)を目指すこと。そして全体の範囲を明確に定義することで、精度が増すと感じました。層別分解(例:年代別)、変数分解(例:売上=単価×個数、どこが増減したか)、プロセス分解(例:入店⇒退店のプロセスで分ける)などの手法が紹介されましたが、感覚ではなく一つ一つ丁寧に試行錯誤することで、結果に繋がる可能性が広がります。仮に結果が出なかったとしても、その切り口に変化がないという情報が成果としてあり、失敗ではないと認識を新たに持つことができました。 MECEと分解方法の実務応用 業務上、様々な数値を取り扱う機会があります。新規業務のフロー作成時や集計業務、既存のルーティン業務に関しても、MECEや分解方法を意識することで、データの抽出方法が変わると感じました。 ミーティングでの分解活用法 新規業務フローのデータや数値取り纏め方法をMECE、分解方法を意識しながら切り口に変化をつけて分解を繰り返し、現状気付けていない数値の傾向や改善策を用意し、関係各署に意見具申していきます。ミーティングの機会も多いため、事前に議題を確認し自身の提案パートに関してはMECE・分解方法を意識し、他に懸念材料や他の提案方法がないかを模索する癖をつけます。 ルーティン化するための工夫 癖付けを具体的に行うため、項目ごとに分解方法をルーティン化します。まず全体の範囲を定義し、5W1Hで問題点を明文化し、分解方法と切り口を選定、MECEを意識して内容を再確認します。これを最低2往復行います。 方法の変化と学習の進捗 最適解とは思いませんが、反復トレーニングの一環として上記手法を学習期間中に実施し、途中で方法も変えていく予定です。

クリティカルシンキング入門

MECEで問題をスッキリ解決する方法

物事を分解する学びの重要性とは? 物事を分解する方法について学んだことが非常に有益でした。まず、全体像を明確に定義し、目的に沿って切り口を設定し、MECE(漏れなく・ダブりなく)の原則を用いて事象を分解します。これには、「層別分解」、「変数分解」、「プロセス分解」の3つのパターンがあります。 分解手法の具体例をどう活用する? 層別分解では、「年齢別」、「性別」、「季節別」といったように、特定のカテゴリーごとに事象を分けます。変数分解では、「売上=客単価×客数」のように、事象を構成する要素に分解します。プロセス分解では、ある事象のプロセスを詳細に書き出し、そのどこに問題があるのかを分析します。 MECEが導く次の一手は? 分解する際には、異なる視点が混在しないよう注意し、まずは試みてみることが重要です。たとえ分解した結果、特筆すべき点が見つからなかったとしても、それは「ここには差がなかった」という価値があり、他の観点での分解につなげることができます。失敗と捉えず、次の行動に繋げることが大事です。 これを売上分析に応用すると、例えば「年齢別」、「性別」、「季節別」に層別分解したり、「売上=客単価×客数」という変数分解を用いたり、プロセスの中の問題点を探るプロセス分解が有効です。 DX人材育成にMECEはどう役立つ? また、DX人材育成に関する施策を進める際の根拠としても使えます。例えば、社員のデータ活用率を上げることを目的に、現状を把握し、MECEを活用して問題点を明確にすることで対策を立てることができます。 意思決定の効果をどう高める? 意思決定時には、情報をMECEで分類し、優先順位を決める手法が活用できます。これにより、どの情報を基に判断すべきかが明確になります。また、プロジェクト進行中に意見が割れた際には、目的を再定義し、網羅的に議論ができているか確認することで、考慮漏れがないかをチェックすることができます。 このように、MECEの原則を用いることで、さまざまな問題や課題を効果的に分解し、具体的な対策や判断を導き出すことができます。

データ・アナリティクス入門

定量データとロジックツリーで解決策を磨く方法

解決策を考える際の注意点は? 課題を与えられた際には、まずどのように解決するかに意識が向きがちです。その結果、【what】や【where】の考察が後回しになってしまうことがあります。この講義を通じて、現状と理想の姿とのギャップを定量的に把握する重要性を学びました。具体的な数値が示されているにもかかわらず、それを使わずに仮説を立て、解決策を考えていた自分に気づくことができ、とても良かったです。 新たな思考法は役立つのか? さらに、ロジックツリーの活用方法についても新たな知見を得ました。通常、条件を先に考え、その条件に合うアイデアを生み出そうとする方法を取ることが多いですが、具体的な打ち手を先に考え、その後条件に当てはまるものを選ぶアプローチが新鮮でした。このような思考法があると知り、非常に役立ちました。 理想と現状のギャップを埋めるには? 顧客との対話においても、理想の姿やあるべき姿の合意を得て、現状とのギャップを埋めていくことが重要です。【what】や【where】を考える前に、まずあるべき姿や望む姿を明確にする必要があります。採用活動においては、人材とのマッチングを図るために具体的な数値に落とし込むことが少ないですが、目標を見失わないように定量データでコンセンサスを取ることを忘れないようにしたいです。また、大きな目標の上にKPIとしての数値目標を立てることも重要だと感じました。 どのようにアイデアを整理する? さらに、用件定義を行った上で解決策を考える際に行き詰まった時には、先にロジックツリーを用いて要素を分解し、その後要件に当てはまるものを選ぶという方法も有効だと分かりました。 1. 顧客との会話の中で都度目標の確認を行う。 2. KPIを設定する。 3. 必ず現状とのギャップを考える。 4. ギャップの原因やボトルネックを調べるために定量データを活用する。 5. アイデア出しで行き詰まったら、ロジックツリーを使ってアイデアを並べ、要件に当てはまるものを選定する。 これらのポイントを念頭に置き、今後の業務に活かしていきたいと考えています。

クリティカルシンキング入門

データ分析で発見した新たな視点

分解ってどう使う? データ分析を行う際、「分解」の重要性とその手法について新たな知識を得ることができました。単に数字を切りの良いポイントで区切るのではなく、まず全体を適切に定義し、必要な情報を明確にした上で、どこで分解すれば全体像が把握できるのかを試行錯誤することが重要であると演習を通して理解しました。 数字の見える化ってどう? さらに、数字をグラフ化して視覚的に表現したり、比率に変換して加工することで、数字だけでは発見しづらかった情報が明らかになることを学びました。分析の初めには、全体を定義して目的を設定し、MECEを意識しながら抜け漏れなく分析を進めることが、業務の効率的な進行に寄与することを認識しました。どのような結果になっても、価値や発見があり、それらはすべて自らの成長に繋がるものだと考え、ポイントを押さえて思考を続けていきたいです。 目的設定ってどうする? 売上やWebページのアクセス数を分析する際に、今までは表面的な数字を追うだけで、原因や改善点が明確になりませんでした。しかし、まず全体を定義して目的の方向性を決めることから始め、MECEを活用しながら漏れや重複を避けつつ課題を分解して解決を図りたいと考えています。分解後には、グラフや比率といったさまざまな視覚化方法を用いて、最適な分析手法を見つけ出し、短期・中期・長期目標の達成に必要なアプローチを定期的に戦略的に見直していきたいと思います。 毎月どうチェックする? 売上やWebページのアクセス数の分析を日々確認し、毎月、前月との比較を行いレポートを作成したいと考えています。基本的には、最初に決めたMECEを活用した分解で分析を進めていきますが、毎月自身の分析方法で問題が解決できているかを見直し、分類についても考え続けたいです。 PDCAをどう進める? 単一の仮説ではなく、2~3つの仮説を立て、その中から最も信頼性があり改善しやすいものを選び、行動に移していきます。2週間から1ヶ月試行し、うまくいかない場合は次の仮説で改善するというPDCAサイクルを実行していきたいと思います。

データ・アナリティクス入門

未来をひらく振り返りの一歩

なぜ複数仮説を作る? まず、目的を常に意識し、その目的に合わせた仮説を複数持つことが基本です。データは膨大な量があり、目的に沿った仮説がなければ、どのデータを選ぶべきかで躓く可能性があります。また、ひとつの事象にとらわれやすい傾向がある中で、複数の視点を持つことが他の可能性を閉ざさないためにも大切です。一つに決めつける心理を俯瞰して見直す努力が求められます。 どう仮説を具体化する? 次に、仮説の立て方は目的に応じたアプローチを取ることが必要です。時間軸、内容、結果からの推論を重視する場合もあれば、問題点の洗い出しから解決策を探る場合もあるでしょう。ビジネスの現場では、結論から入ってしまうと失敗や時間のロスにつながることが多いため、常に仮説思考を持ち、問題意識を大切にしてスピード感を保つことが重要です。 なぜ原因を掘り下げる? 過去の原因を十分に掘り下げ、問題解決につなげることで自社の行動を改善していくとともに、得意先と相互に利益が得られる関係、いわゆるWin-Win体制を作ることが肝要です。これらはすべて、ビジネスにおける成功へとつながる重要な視点です。 スペック提案の落とし穴は? 特に、自社製品・サービスの販売においては、製品のスペック提案に陥りがちです。スペックはあくまで製品の中身に関する情報であり、それが直接ユーザーのベネフィットに結びついているとは限りません。どのような利点があるのか、どんな状態で使用されるのか、また利用する相手はどのような人物なのかを常に予測し、仮説を立てながら動くことが大きな変化を生むと実感しています。 顧客視点でどう判断? まずは顧客起点で、自社製品がなぜ選ばれるのか、または選ばれないのか、その傾向を把握することから始めます。どこで、どのような時に製品が購入されるのかを理解した上で、より良い状況にするための複数の仮説を立てます。そして、その仮説に基づいて調査、分析、データ収集を行い、複数のプランを立案することで、会社としてどの方向に進むべきかの選択肢を明確にし、成功確率を高めることができると考えています。

データ・アナリティクス入門

学びを実践へ!クロス集計から脱却する方法

業務に手法を活かすには? これまでの学びを通じて、「これは使える」という手法を早速業務に活用してみました。しかし、総合演習では「どれを選択するのか」を考えたとき、これまでの学びがまだ身についていないことを実感しました。また、分析に際してクロス集計に依存している自分の癖にも気づきました。他の手法は示唆されれば思いつくものの、依然としてクロス集計に頼ってしまいます。せっかく学んだものを生かし切れていないと感じ、今後は意識していろいろな分析手法を活用する必要があると痛感しました。数をこなすことでしか選択肢の幅を広げることは難しいと学べたことも良かったと思います。 プロセス分解で何が変わる? 問題の原因を明らかにする際にはプロセスに分解することが重要であると気づきました。当たり前のことですが、自分ではそれができていないという発見がありました。また、経験に基づいた仮説を決め打ちしてしまう癖があることにも気づかされました。プロセスに分解する利便性と、その方法が他者への説得力につながるメリットを業務における実績分析でも生かしていきたいと考えています。具体的な手法として紹介されたA/B分析は既に使用していたものの、それをA/B分析と認識していなかったため、目的や仮説設定、検証の項目が曖昧でせっかくの検証結果を生かし切れていなかったと思います。 需要縮小期にどう対応する? 私の扱う製品は急激な需要縮小期を迎えています。そのため、よく「時代の流れ」として片づけられることが多く、そこで分析が止まってしまっていました。しかし、本当にそれだけが原因なのでしょうか。私は「なぜそうなったのか」をプロセスに分解し、正しく理解することが解決策を得るうえで重要な鍵であると考えるようになりました。幸い、過去の業界・当社の実績データはあるので、まずはそれを改めて分析しようと思います。「時代の流れ」以外の要因がないかを探し、その要因に対処することで売上に貢献できるのではないかと考えています。決め打ちせず、様々な選択肢を探ることで、今よりも良い施策を打てるかもしれないと希望を持っています。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

データ・アナリティクス入門

データが語る学びの軌跡

どのプロセスが必要? 分析とは、データ同士を比較する行為であると捉えられます。そして、分析は仮説を立てることから始まり、目的や問いを明確にした上で、仮説設定、データ収集、そしてその仮説を検証するプロセスを踏む、いわば「プロセス×視点×アプローチ」が重要となります. どの視点が有効? 分析における視点としては、インパクト、ギャップ、トレンド、バラつき、パターンの5つが挙げられ、各々の観点からデータを多角的に検証することが求められます。一方、アプローチとしては、グラフ、数字、数式の3種類が存在し、状況に応じた手法の選択が大切です. どの代表値を使う? 数字によるアプローチでは、まずデータの中心位置を示す代表値を注視します。代表値には単純平均、加重平均、幾何平均、中央値などがあり、また、データの散らばりを示す標準偏差などを用いて、他のデータの状態を把握することが重要です。代表値についても、観点により複数の値が存在するため、適切な選定が必要です. 相関はどう読む? さらに、数式化の側面では、「欲しい結果に対して何か効いているか?」という視点で、相関関係を見いだすことができます。ただし、相関が必ずしも因果関係を示すわけではない点に留意しなければなりません. 今後はどう進む? 通常、業務においては年度別の件数や特定分野の傾向を、主に単純平均から読み取っていましたし、どのグラフで可視化するかに対して意識が十分ではなかったと感じます。しかし、今回の学習を通じて、目的を明確にし、どの視点でデータを見るべきか、どのアプローチが最適かということを、1つ1つ丁寧なステップとして考える重要性を学びました。また、相手に説明する際には、ビジュアルを活用することで情報がより伝わりやすくなることも実感しました. 次に何を分析? 今後は、何を分析したいのか、何を知りたいのかを明確にした上で、「代表値」「バラつき」「数式化」の各定義や使用すべき場面を理解し、目的に沿った手法を適切に選択しながら分析を進めていきたいと思います.

データ・アナリティクス入門

AIDAとAIDMAを理解して見直す購買行動

AIDAとAIDMAの区別は? 「AIDA」と「AIDMA」の違いについて学んだ結果、これまで曖昧だった理解が整理されました。 AIDAの流れはどう? AIDAモデルは、顧客が商品やサービスを購入するまでのプロセスを4つの段階で説明します。最初のAttention(注意)では、消費者が商品やサービスに興味を引かれる段階で、広告やプロモーションが効果的です。次にInterest(興味)で、消費者はさらに情報を求めます。Desire(欲求)の段階では、消費者の心に商品を手に入れたいという欲求が生まれ、最後にAction(行動)で、実際に購入に至ります。 AIDMAは何を重視? AIDAとAIDMAの違いも明確になりました。AIDAは購買行動にフォーカスしていますが、AIDMAは購買前の心理プロセスと記憶を重視しています。AIDMAは消費者が購入に至るまでの詳細な心理プロセスを分析するために適用されます。 ダブルファネルとは? また、「ダブルファネル」という概念についても学びました。これは、パーチェスファネルとインフルエンスファネルを組み合わせたもので、消費者の行動をより詳細に分析することができます。パーチェスファネルは、商品認知から購入までの過程を表し、インフルエンスファネルは購入後の情報発信までの過程を示します。この分析を通じて、顧客行動のボトルネックを特定することが可能です。 クリック率はどう見る? デジタルマーケティングにおいては、クリック率やコンバージョン率の分析が非常に重要です。例えば、当社のWEBサービスのFAQメンテナンスでは、汎用性の高い回答を用意し、0件回答率とミスマッチの原因を分析しています。これにより、顧客満足度の向上を図ることができます。また、掛け合わせたデータを用いて、NPS(ネットプロモータースコア)の向上方法も模索しています。 実務にどう活かす? これらの知識を実務に活かすことで、FAQの分析やマーケティング施策の改善に役立てていきたいと考えています。

データ・アナリティクス入門

学びの武器:ロジックツリーとMECE活用法

ロジックツリーとMECEの理解を深める 今回の学びで【ロジックツリー】と【MECE】についてしっかり理解することができました。これまで漠然と理解していたものの、具体的な分析には活用していなかったため、今後の分析に役立てたいと思います。ただし、【感度の良い切り口】を選ぶことが実践では難しいと感じており、特訓が必要だと考えています。今後は、これまでの成功と失敗の分析例を見比べ、感度の良い切り口を探っていきたいと思います。 分析力を向上させるための反省点 私は構造的に物事を分解して考えることが苦手で、【ロジックツリー】や【言語化】によって頭の中で考えていたことを正確に表現できていませんでした。その結果、要因分析の精度が不足していたと反省しています。この学びを経て、より効果的な分析ができるよう努める所存です。もともと時間がかかることもありますが、繰り返し実践し、自分のものにしていきたいです。 実践によるスキルの習得 早速、【ロジックツリー】や【MECE】を日々のデータ分析業務に取り入れ、課題解決に役立てたいと思います。これまでなんとなく分析しており、【what】【where】【why】【how】を頭の中で考えながらも【可視化】や【言語化】していないことが原因で、正確性に欠けていました。恐らく、【感度の良い切り口】が間違っていた可能性もあると反省しています。今後は学んだことを実践に取り入れ、分析の精度を高めていきます。 日々の実践がスキルアップの鍵? 日々の分析で【ロジックツリー】、【MECE】、【感度の良い切り口】を身に付けるためには、繰り返しの実践が大切です。そのために、同僚が利用している【ミニホワイトボード】を購入し、何度も書き出していくつかの切り口を見極めていこうと思います。確定したら、エクセルに【背景】【目的】【仮説】【ロジックツリー】【5W1H】をまとめ、事前に整理した資料をもとに適切なデータを見極めていきます。自分なりの考察をまとめた後は、依頼者と振り返り議論を通じて、より正確な要因分析が行えるよう努めます。

クリティカルシンキング入門

データ分析で視点を広げる新発見

加工と分解はどう? データ分析において、「加工」と「分解」を行うことで解像度が上がり、課題や原因究明につながることが分かりました。さらに、一つの加工や分解方法ではなく、複数の切り口を持つことで別の視点から見ることができ、新たな気づきを得られる点も印象に残りました。「迷ったときはまず分解してみる」ことで、前に進めることができるというのは非常に大きな発見です。ただ考えるだけでなく、加工や分解といった方法を用いて視覚でも考えることを進めていきたいと思います。MECEという概念は理解していたつもりでしたが、「全体を定義する」という視点が欠けていたことで、実際にはMECEになっていなかったと気づかされました。week1で学んだ内容を振り返りつつ、week2で得た気づきを定着させていきたいと感じています。 プロセスをどう見直す? 企画営業の立場として、入口から出口までのプロセスのどこに課題があるのかを分析し、打ち手を考えることが求められます。しかし、これまで分解の切り口が不足していたため、改めて入口から出口までの流れを見直し、どの部分で数字の変化があるのか、またその数字をどう分解できるのかを考え直したいと思います。自分自身、目の前の数字や事象に飛びつく癖があり、思考が浅いと感じるので、データの加工・分解を活用して視覚的にも情報を整理し、思考を広げていくことを意識していきます。また、グラフや表を用いることは、数字以外の業務でもバリューチェーンを理解するなどの方法として活用できると感じましたので、データに限らず、他の業務にも応用できるかを考えていきたいと思いました。 会議資料はどう作る? 直近の会議に向けて、最新の数字を用いた資料作成を行いたいと思います。入口から出口までで何が行われ、どこに課題があるのかを表やグラフで検証し、結果を反映させていきます。企画営業として、数字を日々扱い、その改善策やさらに数字を伸ばす施策の検討も業務の一部であるため、今回の学びを次回の会議から早速活かせるよう準備を進めていきたいと思います。

データ・アナリティクス入門

挑む学び!仮説が広がる瞬間

課題と仮説の意義は? 今週は、課題設定と仮説構築の重要性について学び、サンプルデータを用いた実践を行いました。課題を具体的に明確化することで、その後の仮説の精度が向上することを実感しました。また、立てた仮説に固執せず、検証結果に応じて柔軟に視点を変えることの大切さにも気づかされました。仮説が立証されなかった場合には、別の原因を積極的に探る姿勢が求められます。 なぜ業務は偏る? 営業店の業務負荷にばらつきがある場合、単に「業務量が多い」という理由で負担が大きいと判断するのではなく、どの業務が集中しているのか、フローに非効率な点があるのか、人員配置に偏りがあるのかといった具体的な仮説を立てた上で、必要なデータを特定し検証することが重要です。仮説を基に、どのデータを取得し、どのようなグラフで可視化するかを事前に整理することで、分析の精度が高まります。たとえば、営業担当者ごとの業務時間の偏りを分析する際、移動時間の長さや業務の種類が要因となっているかを検証するために、ヒストグラムや散布図の活用が考えられます。 定量指標は何故大切? 課題設定の精度向上には、定量的な指標を明確にすることが不可欠です。業務負荷の偏りを評価する場合は、「1人あたりの業務処理件数」や「1件あたりの処理時間」を指標とし、営業成績の低迷については「訪問件数」や「折衝時間」、「成約率」を基に状況を把握します。現場の意見をヒアリングし、課題感を共有した上で、分析すべきデータを整理することで、的外れな分析を防ぐことができます。 現場の意見は鍵? また、仮説構築とデータ収集の精度を高めるためには、複数の仮説を立て、どの仮説が有力かを検証する手法が有効です。たとえば、「営業成績の低迷要因」として、訪問件数の不足、折衝時間の短さによる十分な説明ができていない、または高額商品の偏った営業活動といった仮説が考えられます。とりわけ、営業活動に関する領域知識が不足している状況では、現場からの意見を積極的に取り入れた仮説設定が必要だと感じました。

「結果 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right