クリティカルシンキング入門

データ分析で見えた成功と失敗の違い

真因分析の切り口とは? 真因を分析するためには、複数の切り口で分析する必要があります。切り口は、仮説を検証するために適した分け方であるかを事前に確認し、単純に分けるのではなく、目的を明確に設定しなければなりません。仮に仮説が立証できなくても、それは失敗ではなく、仮説が間違っていたことを発見できたと前向きに考えるべきです。 業務の違いはどこに? 私は日常業務で、結果が出ている取引先と結果が出ていない取引先の違いを分析しています。これまでとは異なる切り口を増やして分析を行いたいと考えています。例えば、店主の年齢、社員数、業務品質の良し悪し、取引高の規模といった要素で分析すると、効率的な行動や指導方法に繋がるかもしれません。 効率的な行動を導く分析手法は? 直近のデータを元に、自走化のレベル分け、販売率、顧客数の規模別に分析し、更に年齢、会社人数、業務品質別に分けて分析を行いました。結果が出ていない層に対しては、一定期間共通の働きかけを実施し、その変化を分析することで、次回の検証に繋げていきたいと考えています。

クリティカルシンキング入門

多角的視点で魅せる学びストーリー

根本原因を捉えるには? 論点や課題、問題の根本を捉えるためには、多角的な切り口からの分析が必要です。グラフなどの視覚資料を工夫して用いることで、データが一目で理解できるように整理すると良いでしょう。分析結果をもとに、的を射た対策を慎重に検討する姿勢が求められます。 問い合わせは何故? たとえば、社内からの問い合わせが多く業務効率が低下している場合、その問い合わせ内容を詳細に分析し、そもそも情報の周知不足なのか、マニュアルが分かりにくいのかといった根本的な原因を明らかにする必要があります。 結果伝え方はどう? さらに、さまざまな視点から問題や課題を分析し、真の原因を把握することが大切です。そして、得られた分析結果を、相手に分かりやすく伝えるためにメッセージ文を十分に検討して作成することが効果的なコミュニケーションへとつながります。 グラフ作成の工夫は? また、グラフ作成にあたっては、結果が直感的に理解できるようにレイアウトやデザインを工夫し、見る人が情報をすぐに把握できる表現にすることが重要です。

データ・アナリティクス入門

仮説×分析で広がる学び

最初の目的は何? 分析に対して明確な目的意識を持ち、初めから仮説を立てるというプロセスは非常に実践的で役立ちました。最初に結論の方針を定め、その上でデータ収集を進める手法は、後の分析をスムーズに導いてくれると実感しています。 データ分解の意味は? また、データを分解し、得られた情報をさらに細かく吟味してストーリー性を持たせる工夫も印象的です。仮説の過程や構成要素を記録しておくことで、最終的な結論と照らし合わせながら再確認するプロセスも納得できるものがありました。 なぜ比較が必要? 加えて、複数の対象者から得られる情報において数を揃えて比較をするという点は、分析結果を信頼性の高いものにするための大切なポイントだと感じました。これにより、結論を支える根拠が一層明確になり、聞き手が納得しやすい資料作りが可能になっています。 学びの意義は何? 全体として、仮説に基づいたデータ収集と詳細な検証、そして論理的なストーリーの構成という一連の手法は、現実の業務においても非常に活用できる貴重な学びとなりました。

データ・アナリティクス入門

予測とギャップで深まる学び

予測とのギャップは何故? ミュージックスクールの実践演習では、加工後のデータを読み解き、解釈する際に難しさを感じました。まず、読み解く前に予測を立て、その予測とのギャップに注目することで、分析をより深堀りできることを学びました。また、演習で既存の年齢分布図を見て、年齢の集約単位の設定が重要であると気づきました。大まかすぎると差異が見えにくく、細かすぎると傾向を把握しにくいということを実感し、複数のパターンを試す経験が必要だと感じています。 売場配置の効果は? 担当部門の売上分析においては、予測を取り入れ、実際の結果とのギャップに基づいて分析を深める計画です。また、家庭用食品の営業担当として、限られた売場スペースに対して各商品の配置を最適化することが重要な課題であると認識しています。加重平均を用いて商品ごとの数値を見ることで、売場のスペース効率を評価し、最適なゾーニングを提案することで業績向上に寄与したいと考えています。データ加工時の適切な集約単位の選定についても、さらなる実践の中でスキルを高めていく所存です。

データ・アナリティクス入門

目的明確で築く確かな結論

分析目的は何? 分析の目的を明確にすることは非常に大切です。何のために分析するのか、その目的をはっきりさせた上で、比較対象を可能な限り条件を揃えて行うことで、有益な分析結果が得られます。結果として、比較のためのデータ収集が重要なプロセスとなり、その積み重ねが有意義な結論に結びつきます。 品質管理はどうする? また、品質管理の業務においては、障害の原因分析や発生した障害に対する対策の有効性を検証する際にも、この手法が有効です。分析の目的が既に明確であれば、次に課題となるのは、比較対象となるデータの選定と収集です。その際、これまでの経験を踏まえ、しっかりと仮説を立てながら進めることが、正確で有意義な結論を導くポイントとなります。 仮説作成はどう進む? さらに、仮説を立てる場合は、個人の経験や知識だけに頼るのではなく、周囲の知恵や知識を共有して取り入れることが重要です。関係者との情報のやり取りが、より有効なデータの選定と収集につながり、最終的には信頼性の高い結論を導き出すための大きな助けとなると考えます。

データ・アナリティクス入門

議論が生む新たな発見

多角的視点で何が見えた? 学んだ内容を振り返り、複数の視点から議論することで、これまで見落としていた点や新たな切り口、さまざまなアプローチ方法に多くの気づきを得ることができました。今後は、このような環境を社内にも広げ、各自が自走できる体制を整えていきたいと考えています。 上司の依頼はどう活かす? 日常業務では上司からデータ分析の依頼を受けることが多く、上司の興味関心と実際の事業課題を明確に切り分け、目的意識を持った意味ある分析が事業に貢献できるような環境作りが求められると実感しました。また、データ収集がそれ自体の目的にならないよう、適切なデータの収集と活用に努める必要があります。 実行策にどうつなげる? このため、まずはビジネスプロセスマップやビジネスモデルキャンパスを作成して全体像を把握します。次に、関係者間で課題の所在を共通認識として持ち、データ分析を通じて課題の発見や優先順位、重要度を明確にします。最後に、分析結果に基づき実行策を評価することで、より効果的な改善策を進められると考えています。

クリティカルシンキング入門

切り口から紐解く数字の魅力

数字の解析はどうする? 今週は、数字を分解する方法について学びました。数字はそのまま扱うのではなく、グラフや比率などに加工することで、より分かりやすくなるという点に気づきました。また、データを仕分ける際は、さまざまな切り口を考えて書き出すことが重要であると学びました。得られた数字の解釈に思い込みすぎず、結果が出なくても構わないという柔軟な姿勢が大切であり、迷った際には別の切り口からアプローチすることが有効だと理解しました。さらに、実践に際しては、属性、変数、プロセスという3つの切り口からMECEの概念を活かして分解する方法も学びました。 売上分析はどう進む? この学びを活かして、月次の売上報告書の分析に取り組んでみたいと考えています。まず、売上を顧客数×単価の視点から自社の過去の傾向を整理し、課題を特定します。次に、その原因を明らかにするため、顧客をいくつかの切り口に分け、それぞれの単価傾向を比較してみます。最後に、分析結果から導かれた解釈が適切かどうか、会議で意見を聞くことで確認していく予定です。

クリティカルシンキング入門

未来を拓く振り返りの力

分析の目的は? 分析を進める際は、単に計算のしやすさで切り分けるのではなく、何のために分析するのかという目的意識が大切だと学びました。そのため、まずは仮説を立て、複数の切り口から考えることが求められます。結論が出たと感じても、再度丁寧に見直すプロセスが重要です。 視覚化の効果は? また、分析した結果を有効に活用するためには、視覚化が不可欠です。データをグラフや図表で表現することで、「目に仕事をさせる」効果が高まり、情報がより伝わりやすくなります。 行動予測はどう? 具体的には、お客さまの行動予測の場合、過去の実績データをもとに、締結チャネルの変化などを切り口にして分析します。月ごとの傾向を把握し、そこに変化が現れていないか、また今後どう推移するのかを考えることが大切です。 評価の均衡は? さらに、メンバーやスタッフのパフォーマンス評価においては、従来は品質と効率を個別に評価していました。しかし、両者をバランス良く満たす適正値を見つけることが、より正確な評価につながると考えています。

クリティカルシンキング入門

分解で発見!学びのチャレンジ

分解の意義は? 「分けていく」ことは、理解を深めるための重要な手段です。たとえば、数字を活用する際には、まず全体を定義し、目的に沿った切り口で分解することが求められます。このプロセスは、結果がすぐに見えてこなくても、どこに傾向があるかを把握する手助けとなります。 迷いはどう克服? 分解する作業に迷いが生じた場合も、早急に結論へたどり着くために、思い切って分解を実施してみることが大切です。時間をかけて検討するより、まずは行動してみることで、意外な発見に繋がることもあります。 課題の本質は? 顧客実績のデータ分析においては、これまで曖昧な課題から無理やり示唆を引き出してしまうことがありました。そのため、問題提起の初めに目的を明確にし、「問題箇所」の特定、「原因究明」、そして「解決策」の各ステップを順序立てて検討する姿勢が必要です。 相談で解決する? また、業務に関しては、同僚や部下との相談を積極的に行い、情報の整理や意見交換を通じて、より良い解決策につなげることが望まれます。

クリティカルシンキング入門

MECEで紐解くデータの真実

分析精度はどう上げる? 今回の学習を通して、データの分け方によって答えにぶれが生じること、また分解方法によっては誤った結果にたどり着いてしまうことを改めて体感しました。まずは多くの分け方や分解方法を列挙し、何度も試行と分析を重ねることで、より精度の高い分析結果を導けるのではないかと感じています。その際、MECEの考え方が重要であることも学び、層別分解、変数分解、プロセス分解を用いることで、もれや重複なく整理する大切さを実感しました。 投資家は何を求める? また、機関投資家に対する営業活動の観点からは、自社商品のニーズがどのような属性の投資家にあるかを検討する際に、本学習で得た知見が活用できると考えています。既存の取引先データを加工・可視化し、様々な切り口で分解することで、アプローチすべき投資家像を明らかにできると感じました。さらに、自社商品のプレゼンテーション資料作成においても、特徴や傾向を多角的に可視化し、投資家に商品性への理解を深めてもらうための有効な手段として活かしていきたいと思いました。

データ・アナリティクス入門

エビデンスが示す戦略の新境地

A/Bテストとは? A/Bテストは、データ分析における「比較」の重要性を実感させる手法です。ランダムにサンプルを抽出することで、一定数の調査データから精度の高い結果が得られる点や、どの工程でボトルネックが発生しているか割合を算出できる点に実践的な可能性を感じました。 戦略の判断基準は? 勤務先のイメージ戦略について、2つの側面のうちどちらを強調すべきかは感覚的には把握しているものの、エビデンスが不足しているため不安な面もあります。A/Bテストを活用すれば、どちらがより効果的か明確に判断できるのではという期待から、早速ターゲティングサービスを提供する業者に同様のサービスがあるか確認する予定です。ただし、単純にAかBのどちらかだけではなく、両方を組み合わせた戦略が効果を高める可能性もあると考え、慎重な実施が必要だと感じています。そこでまずは広告代理店に相談し、業界の広報戦略が十分に実践されていない現状を踏まえた実証実験として、自社と共同で取り組める可能性を探るため、休み明けに連絡するつもりです。

アカウンティング入門

守る価値 育む成長の秘訣

本当に価値を守れてる? 企業が利益を上げるためには、売上を増加させるとともに費用を削減する必要があります。しかし、各施策を検討する際には、自社が大切にしている価値を十分に考慮することが求められます。無闇に費用を削減すれば、大切にしていた価値が失われ、その価値に共感していたお客様が離れてしまい、結果として売上が下がり利益が出なくなる可能性があります。 コアバリュー再認識は? そのため、幹部候補メンバーとの事業計画策定時には、まず自社のコアバリューを再認識してもらい、その上で売上増加と費用削減の施策を検討してもらいます。出てきた各アイデアについては、自社のコアバリューを損なわないかどうかを丁寧に確認していくことが必要です。 数値が示す真実は? また、幹部候補メンバーには、自社のお客様と売上のデータを分析し、お客様が何に価値を感じているのかを考えてもらいます。その「価値」が損なわれない範囲で実施できる費用削減策と、その「価値」をさらに高め、売上増加につながる施策を立案することが求められます。

「結果 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right