デザイン思考入門

挑む受講生が描く学びの軌跡

どの手法が有効? 私の業務では、主に三つの手法を活用しています。まずA/Bテストでは、メール告知に取り入れる際に、カラーや情報の提示順序などの要素を変更しながら検証を行います。数値化可能なクリック率やコンバージョンの結果をもとに、効果を測定しています。 参加型はどう活かす? 次に、参加型デザインです。アンケートの回答からユーザー視点での改善点を抽出し、定期的に開催するセッションでは、複数のロイヤルユーザーの意見を自由に出してもらいながら改善策を模索しています。 インタビューで何を引き出す? さらに、インタビューも実施しています。購入の動機や使い方を詳しく聞き取り、限られた時間の中でユーザーの意見を引き出すためには、ファシリテーション技術が重要であると感じています。なお、インタビューでは、自分の仮説検証において予想と異なる結果になることも多々あり、大きな声を持つ一部の意見に左右されず、冷静な判断が求められると実感しています。また、求めるデータの種類に合わせて、最適な情報収集手法を選択することも大切です。 デザイン思考はどう磨く? デザイン思考については、明確なゴールが設定されているわけではなく、その時々で最高のものを作るために100%の力を注いでいる状況です。しかし、知れば知るほど「より良いものを」という気持ちが高まり、常にアップデートを重ねていくOSのようなものだと感じています。かつて先輩から「我々が作るものは常にβ版である」との言葉をいただいたことが、決して満足せず成長し続ける意欲に繋がっていると改めて考えるきっかけとなりました。

クリティカルシンキング入門

データ分解で見える新視点の魅力

数字分析の本質は? 数字を分析するとき、一つの要素だけでなく、複数の要素を組み合わせて分解することで、新たな視点が得られることがわかりました。分解することで初めて見えるものがあり、実際にデータを操作してみることの重要性を感じました。エクセルで表をダウンロードし、関数や条件付き書式を使って分析することで、数字に隠れた情報も明らかになりました。また、どの要素をどのように分解すればどんな結果が出るのかを予測しながら作業することが、分析の精度向上に繋がると実感しました。 工数分析の効果は? 具体的には、コールセンターの効率化にこの分析手法を活用したいと思います。応答時間、後処理時間、入電内容、お客様の待ち時間などの観点から、それぞれの業務にかかる工数を数値化できます。これにより、どの業務に多くの工数を費やしているのかを可視化し、効率化の余地がある業務を特定することが可能です。 多角度分析のヒントは? さらに、コールセンターでは顧客から情報を得るだけでなく、それを様々な角度で分析して新たな顧客獲得のヒントを見つけることができると感じました。こうした情報は営業やマーケティング部門でも必要とされるでしょう。どんな情報が役立つかを部署間で話し合い、共有することが重要です。 新たな要素を探す? 今後、毎月集計しているお問い合わせ内容や顧客情報を新しい要素で分析してみたいと考えています。これまではカスタマーセンターの視点で集計を行っていましたが、マーケティング部門の視点でどのように数字を分解できるかを検討し、目的に応じた分析を進めていきたいと思います。

クリティカルシンキング入門

データ分析で見つける新たな可能性

情報はどう整理する? データを分析する際には、まず与えられた情報をそのまま受け取るのではなく、必要に応じて自分で欄を増やし、追加の情報を作成することが重要です。そして、その情報を視覚化し、絶対値だけでなく相対値も考慮しながらデータを評価することを心がけるべきです。 区切り方はどう決める? 次に、データを視覚化する際には、データの区切り方によって見える情報が異なることを認識し、自分の仮説が事実かどうかを確認するためにどの単位でデータを区切るかを慎重に考える必要があります。一番重要なのは、データをさまざまな切り口から分解し、単純に受け入れるのではなく、再度丁寧に考え直す姿勢です。 分解精度はどう向上? 業務においては、改善提案資料の根拠を示す際、日常的に発生する内容に対して、前回よりも今回、今回よりも次回と、分解の精度が向上していることを自分で確認しながら取り組むことが求められます。また、新しい運用の実施可否を判断してもらう際や、イベントのアンケート結果を分析する際、応対品質評価結果を分析する際にも、しっかりとしたデータの準備と分析が必要です。 事実確認は万全か? 確かな事実を分析するには、必要なデータが揃っているか、十分に分解されているかを事前に確認し、その上でデータ分析を開始するようにします。これにより、ただ手元にあるデータをそのまま見るのではなく、一時停止してデータを視覚化し、仮説が事実であるかを確認することを意識します。そして、MECEなどのフレームワークを活用し、抜け漏れがないかを確認した上で結論を導き出すことを心がけます。

データ・アナリティクス入門

データ分析で改善への道筋を見つけよう

分析の基礎を見直すには? 分析とは、データの要素を整理し、比較対象や基準を設けて比較することです。目的や比較対象が曖昧だと、分析とは言えません。データを漫然と分析し始める前に、その要素を整理し、明確な目的を持って比較することが重要です。 可視化手法の多様化を 分析の結果を効果的に見せるためには、定量データの種類に応じた加工方法やグラフの見せ方を工夫する必要があります。これまで自己流でデータを可視化してきたこともありますが、さらに多様な手法を学び、見せ方を向上させていきたいと考えています。 採用分析をどう進める? 採用に関わる分析とその対策については以下のように進めます。まず、分析の目的を明確にし、具体的な比較対象を設定することが重要です。例えば、「前週比での応募者数の変化」や「媒体別、フェーズ別の歩留まり」といった視点で分析を行います。これにより、漠然とした分析を避け、得られる洞察が増します。 データを効果的に可視化 また、データの可視化については、週次データの推移を折れ線グラフで表現したり、部署別の採用状況を棒グラフや円グラフで示すなど、データの特性に合った適切なグラフを使います。こうした方法で、データの傾向や課題がより明確になり、効果的な対策の立案に繋がります。 分析のブラッシュアップ方法 今後、目的を複数設定し、分析のための要素分解や比較対象の再設定(過去3年間や各媒体ごとなど)、統計データの整理、分析手法の見直し、結果の行動変容といった点についても改善を重ね、週次で行う分析をブラッシュアップしていきたいと思います。

クリティカルシンキング入門

異なる視点で磨く伝え方の技術

交流で何を感じた? ①異なる職種や立場の方々との交流を通じた学びでは、社内では当たり前と思われる承認が得られない状況に直面しました。この経験から、自身の話し方や論理的な説明を工夫する重要性を意識しました。グループワークでは、論点を見直すための問いかけができたことも大きな収穫でした。背景として、前提知識が異なるためにフラットな視点で物事を見ることができたことも影響しています。 どのグラフが効果的? ②相手にわかりやすく情報を伝える方法については、社内であまりグラフを作成しなかったため、当初は体系化されていませんでした。しかし、学びを通じて折れ線グラフは推移を示すために、棒グラフは時系列で情報を見せるために有効であるといった具合に、体感的な見やすさを言語化することができました。 どの手順が有効? 効果的な情報の伝達には、「考える→情報を集める→再考する」という手順が大切です。具体的には、文章の目的や読み手、前提情報や懸念点を理解した上でメッセージを組み立てることが求められます。 グラフで何を伝える? また、グラフ作成は、説得や課題把握の一手段ですが、そこから何が言えるかを自分なりに言語化することが重要です。データを元に示唆を発見し、相手や自身を納得させるプロセスが欠かせません。 どの方法で振り返る? 情報の伝達にあたっては、自分が文章を作成する際だけでなく、他者の文章をチェックする機会でも、この学んだ手法を活用しています。プロジェクト完了後の振り返りにおいてもアンケート結果を分析し、最も見やすい形で伝えることに努めています。

データ・アナリティクス入門

データ分析で未来を切り拓く方法

分析の前提は合ってる? 「分析とは」「データについて」「ビジネスにおける分析」についての解説を通じて、日常の業務における暗黙の前提が見直される機会となりました。データ分析には、それぞれの経験により前提や基盤となる考え方にバラツキがあることが分かり、データを比較する目的を意識する大切さを学びました。ワーキンググループでは、積極的に意見交換を行い、メンバーからの多くの意見を参考にしつつ、自らの意見も発信できたことに感謝しています。 未来予測をどう図る? 普段の業務では、「分析とは」「データについて」「ビジネスにおける分析」についての振り返りを行い、業務の流れを見直すことができました。社内のKPI達成のために、次月に向けた改善計画を策定していますが、過去の実績結果をもとにした流れだけでは未来予測が考慮されていないことに気づきました。そのため、未来予測をデータとして仮想化し、改善計画に組み込むことで、より効果的なアクションを起こしていきたいと考えています。 改善策はどう統一? 現状では、分析後の改善アクションが各メンバーの個人裁量に委ねられていることに気づきました。この活動を通じて得たデータを元に、ベースラインを見つけることで、他の拠点や部署にも均質な業務品質を展開できる可能性があると感じています。 新たな発見はある? 一方、メタ思考的な視点から、社内に未分析の領域があることも考えられます。これらを確認し、分析する価値が見出された場合には、新たなデータ取得の検討や仮説構築を通じて、具体的な成果を導き出す道筋を考えたいと思います。

データ・アナリティクス入門

データ分析で未来のトレンドを掴む方法

比較で何が分かる? データ分析は、比較することで初めて意味が生まれます。そのため、分析の目的に応じて適切な比較対象を設定することが重要です。データ分析の目的を明確に整理し、関係者間で共通認識を持つことが大事です。漫然とデータを分析するのではなく、目的達成に必要な事項を洗い出し、仮説を立て、仮説の検証としてデータの収集と加工を行うといった順序に従って進めていくことが望ましいです。 販売動向はどう見る? 具体的には、自社や他社商品の販売動向とその結果の要因分析を行い、次の新商品開発に生かすことが挙げられます。売れている商品の共通点やトレンド、どのような顧客にどのような商品が売れているのかを購買データから分析します。そして、売れない理由についてアンケート調査の結果を分析します。また、売上が低迷している商品のリニューアルに向け、売上低迷の要因を購買者層の変化から分析し、競合品の販売動向や購買者動向の分析、アンケート結果の分析を通じて方向性を示します。 調査結果は効果的? さらに、商品コンセプト調査結果やアンケート調査の効果的な分析により、商品案の軌道修正を行い、説得力を高めることも必要です。 前段階で成功策は? これらのプロセスを進めるにあたっては、アンケート調査票の作成やデータ収集の前に、目的の整理と関係者間での共有を行うことが不可欠です。そのうえで、必要な事項を洗い出し、仮説を整理し、収集したデータの加工の方法までを想定し、全体像をイメージして作業を進めることが大切です。データ収集の前段階を丁寧に行うことが、成功の鍵となります。

データ・アナリティクス入門

ファネル分析で見える改善の鍵

ファネル分析はどう? 問題の原因を明確にするためには、取り組みを各プロセスに分解し、それぞれのプロセスを確認することが有効です。特にファネル分析は、ユーザーの利用段階を「注目」「興味」「欲求」「行動」などのプロセスに分け、どの段階でユーザーが離脱しているかを可視化する手法です。ファネル分析には、ファネルそのもの、横棒グラフ、プロセス×ウォーターフォールなどのチャートがあります。この分析を行う際のコツとしては、顧客の行動プロセスを適切に設定し、「実数」と「比率」のバランスを重視することが挙げられます。原因を一つに特定しすぎず、ある程度方向性が決まれば仮説に基づいてABテストなどで検証し、必要があれば仮説を修正していくことも重要です。 募集プロセスはどう? 生徒募集活動においては、「学校の存在を知る」「学校に興味を持つ」「学校説明会・個別相談会を申し込む」「実際に参加する」「出願する」「入学する」というプロセスを通じてファネル分析を行います。それぞれのプロセスでの人数の実数と比率をチャートとしてまとめ、問題があり優先して取り組むべきプロセスを特定します。 事例調査はどう? 具体的な取り組みとしては、まずファネル分析事例を検索して、できるだけ多くの事例、特に学校法人の事例を調査します。そして、入試広報部から昨年度の生徒募集活動の各プロセスのデータを入手し、ファネル分析を行います。その際は、実数と比率の両方でチャートを作成します。最終的に、分析結果を入試広報部と共有し、問題のあるプロセスについて共通認識を持ち、改善策の検討を進めます。

データ・アナリティクス入門

受講生が綴るリアルな学びストーリー

仮説立ての理由は? 問題解決にあたっては、まず4つのステップに沿って検証を進めることが大切です。特に、データを見た段階で早急な結論に飛びつくのではなく、まず仮説を立て、その仮説を検証するプロセスを欠かさないようにしましょう。データはその見せ方によって印象が変わる可能性があるため、作成者の意図に左右されずに正しく理解することが求められます。また、フレームワークを効果的に活用することで、検証漏れや盲点の発見にもつながります。 分類・比較の意味は? 分析の基本原則としては、「分類して比較する」という手法が重要です。各データの確からしさや抜け漏れ、見逃しがないかを確認するために、データを適切に分類し、条件をそろえて比較する工夫が必要です。データをそのまま受け入れるのではなく、仮説を立てながら検証する姿勢を保ち、多様な分析フレームワークを活用することで、思い込みを排除して正確な評価が可能となります。 比較意識のポイントは? さらに、分析の際には分けて比較することを常に意識してください。比較対象を同じ条件の下で整理することで、普段気づかない新たな視点を得ることができ、より納得のいく分析結果に繋がります。 重要ポイントとは? 最後に、これからデータと向き合う上で絶対に忘れてはならないポイントを挙げると、まず「分けて比較する」という基本原則、次に仮説思考、そして What、Where、Why、How の4ステップに沿って考察することです。これらを意識することで、より論理的かつ的確な分析が実現できるでしょう。

デザイン思考入門

仮説で解く!みんなの業務課題

なぜ業務量に差が生じた? 現在の業務は減少せず、同じ部署内で担当する業務量に大きな差があるという課題を感じています。この状況について、なぜそのような事態になっているのかを定性分析を用いて仮説を立て、解決に向かわせる方法を考えました。インタビューなどを通じ、単なる業務量だけでなく、その背後にある問題点を明らかにする必要があると考えています。 アンケートから何が分かる? 今回の演習で気づいたのは、アンケートの結果から、経験や年代にかかわらず共通の課題が存在することが分かった点です。この結果は、データをコーディングすることで抽出されたものです。しかし、実際に対処するデータは今回のものよりも複雑で量も多くなるため、分析の難易度は大幅に上がると感じました。また、課題設定において、単に現状の課題を把握するだけでなく、その課題があることによってユーザーがどのような回避行動をとるのかという視点を加えるという新たな発想も得られました。回避行動も一つの課題として捉え、解決策を検討することが求められると学びました。 定性分析で何が見えた? さらに、分析手法として定量分析と定性分析が存在し、特に仮説の構築が重要であることを再認識しました。定性分析は仮説構築に大いに役立つという新たな気づきも得られました。分析結果から浮かび上がった問題について、もし解決が進まなかった場合の条件を設定し、さらに課題を掘り下げる手法も有効であると感じました。なお、解決策を前提にして課題を定義しないという点についても、常に意識して取り組む必要があると理解しました。

データ・アナリティクス入門

小さな目的で大きく飛躍

なぜ目的を明確に? データ分析を始める前に、何のために分析を行うのかを自分自身で明確にすることが大切だと実感しました。たとえば、ただ「売上を上げる」といった大まかな目標ではなく、単価の向上や客数の増加、さらにはリピート客数の増加といった細かな目的に分解することで、具体的なデータの必要性が見えてきます。 どう仮説を組み立てる? 目的が定まったら、その目的に沿った仮説を立てることが重要です。普段の経験から導かれる傾向や、検証に必要なデータの方向性を見極めることで、より実効性のある仮説に繋がると感じました。 範囲の整理はできた? 分析の範囲は、状況の把握、課題の特定、そして最終的な解決策の提示と幅広いものがあります。たとえば、舞台関連の業務で観客のデータやアンケート結果を扱う際も、リピーターの観劇回数を増やすための施策や、特定の公演回における入場率の偏りを解消するための工夫を検討するなど、具体的な目的に基づいて分析に取り組む必要があります。 経験から何を学ぶ? 実際に、目的が曖昧なまま全てのデータ取得を依頼してしまい、大きな負荷をかけてしまった経験もあります。もっと目的を絞って依頼していれば、時間も労力も節約できたと反省しています。 今後の改善策は? これからは、データ収集の前に必ず「何のために」分析するのかを立ち返り、その目的が状況把握なのか、課題識別なのか、または解決策の提示なのかを明確にし、最小単位に分解した目的を一つずつ積み上げながら大きなゴールを目指していきたいと思います。

データ・アナリティクス入門

目標達成の鍵は目的の明確化とデータ分析

目的の設定はなぜ重要? 分析を始める前に、目的の設定が非常に重要だと感じました。ビジネスにおいては、自分たちが他者のどんな課題を解決できるのか、そして自分たちの強み(競合優位性)は何なのかを明確にしてから、目標や目的を設定することが大切です。データ分析はクライアントの課題を解決するための手段の一つであり、データ分析の手法を学ぶこと自体を目的にしないように心がけたいと思います。 生存者バイアスにどう対抗する? また、生存者バイアスに引っ張られないコンサルティング施策の立案も重要です。成功事例を基準に判断し、成功しなかった事象を軽視する傾向があります。そこで、解決策として生存者と非生存者の両方に目を向け、結果全体のデータ分布を分析することが必要です。 複数視点を持つ重要性 複数の視点を持つことも大切です。肯定的な結果だけでなく、否定的な結果も含めて複数の結果を検討します。そのためには、失敗に関するデータを収集し、様々な立場の人たちからフィードバックを幅広く集めることが求められます。 自分の仮説をどう疑う? さらに、自分の考えを否定してみることも重要です。自分の仮説や結論に対して疑問を投げかけることで、新たな視点が生まれます。 プロセスに注目する理由は? 最後に、データを定点観測する際は結果だけに目を向けないことです。最終的な結果だけでなく、その結果に至るプロセスにも注目します。複数のタイムポイントを設定し、結果に至るまでの変動やどの時点で問題が発生したのかをデータに加えるように心がけることが大切です。

「結果 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right