データ・アナリティクス入門

変数分解で広がる学びの可能性

MECE活用の秘訣は? 問題解決を行う際は、もれなくダブりなく切り分けた状態でMECEを意識し、ロジックツリーを活用してアイデアを出すことが大切です。分解方法としては、層別分解と変数分解があり、様々な切り口で意味ある分類を行うことが求められます。最終的に一つの案に絞る際は、ロジックツリーで複数の案を出した後、評価基準に基づいて選定する手法が有効だと感じました。今回、これまで慣れていた層別分解に加え、初めて変数分解での案出しを実践してみることにしました。 品質改善はどう考える? 製造業での品質不良分析や、売上向上を目的とした修理データの分析にも、MECEやロジックツリーを用いた要因分析が役立ちます。たとえば、層別分解では製品別や地域別で分類し、変数分解では客単価×客数や数量×単価といった切り口を採用できます。これにより、不良の原因を網羅的に洗い出し、的確な対策を立案することが可能となります。

戦略思考入門

学びから戦略への第一歩

フレームワークは何? 3C、SWOT、バリューチェーンなどのフレームワークを学ぶ中で、外部・内部分析の基礎を理解することができました。具体例も交えられており、とても分かりやすかったです。今後は、さらに多くのフレームワークの知識も広げていきたいと考えています。 業務改善のヒントは? 一方、学んだフレームワークをすぐに自分の業務に適用してみたものの、分析の粒度が粗く、経営の成功に直結する具体的な施策を打ち出すのは難しいと感じました。専門家同士が集まり、内部・外部の分析を行うことで、より高度な施策の立案が可能になるのではないかと思います。 戦略再考はどう? 今後は、フレームワークの基礎を踏まえた上で、自社の経営戦略の資料を再度確認し、戦略検討のプロセスや考え方を自分なりに学び直していきたいと考えています。まとまった時間が確保できる長期休暇などを活用し、じっくりと身に付けていくつもりです。

リーダーシップ・キャリアビジョン入門

気づきが未来を拓く瞬間

部下の意義は何だろう? 部下に仕事を指示する際は、その意義や目的、達成条件を明確に伝えることが重要です。単に答えを決めて従わせるのではなく、実践で感じたり学んだりしたことから、自ら考え行動に移すよう促すことで、モチベーションと成長が高まります。 部下の目標を見直す? 依頼した仕事に関しては、部下の目標と達成条件を再確認しましょう。仕事の意義や、目標達成後にどのように発展できるかを伝えることで、成長につながると同時に自発的な考察も促されます。また、同じアプローチをアルバイトやパートの方々にも適用し、トレーニングに役立てることが大切です。 説明は具体的に? 目標設定時には、具体的な説明が不可欠です。しかし、どのような仕事でも十分な時間が取れるとは限りません。そのため、相談と調整を段階的に行い、部下から必要なフォローを聞き出すとともに、トラブルシューティングに注力する姿勢が求められます。

戦略思考入門

営業プランを劇的に進化させるフレームワークと出会う

目標設定に必要な要素とは? ゴールや目的を明確にし、最短距離を導き出すためには、何が必要で何が不要なのかを具体化する必要があります。その際、フレームワークを用いて定量的・定性的な要素を確認し、優先順位を見直していく必要があります。差別化については、顧客がどのように感じるかが重要です。 営業プラン作成に役立つ学び このナノ単科の学びは、営業プランの作成に大いに役立つと感じています。以前はフレームワークのやり方がわかりませんでしたが、今回の学習で分析手法を学べたため、これまでなんとなくで作成していたプランをさらに具体化できると思います。 ビジネスプランとキャリアの見直し 現在作成しているビジネスプランを見直し、この学びを活かしてフレームワークを用いながら検証していきたいと考えています。また、転職を視野に入れ、自分のキャリアを見直し、必要なスキルをさらに明確にしていきたいとも思います。

マーケティング入門

マーケへ踏み出す学びの一歩

どんな成長があった? WEEK1から現在までの学びを振り返り、全体の流れや体系が整理できたと感じています。基礎的な内容やダイジェスト的な学びを得たことで、今後は自ら学習を深め、マーケティングとは何かを自分の言葉で語れるようになることを目標としています。 伝え方の工夫は? また、社内でサービスや連絡事項を伝える際には、「規則だから」「ルールだから」といった一方的な言い方にならないよう注意しています。常に相手の立場に立ち、相手自身が主体的に取り組みたい、使ってみたいと思えるような伝え方を心がけています。 深め方はどうする? 学びをさらに深めるためには、より適した教材を活用して学習を進めることが大切だと考えています。YouTube動画を通して多くの発信者からマーケティングに関する考え方をインプットし、また書籍を利用して関連図書を読み、ナノ単科で得た知識を一層深く掘り下げていく予定です。

クリティカルシンキング入門

まずは最優先から!課題解決術

イシューって何? イシュー(最優先課題)の特定と、その課題に対する対策から次のイシューを明らかにし、順次対策するというプロセスを学びました。この方法により、効率的かつ効果的な課題解決が可能であることを理解しました。 優先順位はどうなる? 一方で、事実を多角的に捉え課題を洗い出す際に、何を最優先に解決すべきか見極めるのは容易ではないと感じました。 目標達成の秘訣は? たとえば、担当部署の予算目標に対して実績が追いつかない状況では、様々な要因が絡み合っている中で、目標達成のためにまず最優先すべき課題を明確にすることが、効果的な対策の立案につながると実感しました。 次は何をすべき? 今後は、課題の洗い出し、詳細な分析、優先順位の整理を常に意識しながら、優先度の高いイシューから順に対策を講じ、その結果をもとに次の課題を把握し対処するというサイクルを継続していきたいと考えます。

データ・アナリティクス入門

数字で読み解く現場の真実

記述統計量はどう見る? 平均値だけでなく、中央値、標準偏差など他の記述統計量を抽出することで、データのばらつきまで確認できる方法を学びました。この手法は、問題解決の際に誤った仮説を課題と認識しないための一助となります。 現状指標の見直しは? 現在の職場では、平均値、最大値、最小値のみが共有される指標となっているため、今後はQ1で述べた内容も加えて集計を行いたいと考えています。数値だけでは状況が把握しにくいこともあるため、ヒストグラムや散布図などのグラフを活用し、視覚的に理解しやすい資料作成を目指します。 実績可視化をどう進める? また、FY24の実績値集計においては、ヒストグラムや散布図を用いて数値を分かりやすく可視化する計画です。具体的な項目としては、電話数と業務歴、トスアップ数と金額、トスアップ数と受注額、さらにはトスアップ数と年度内受注率の関係性を検証していく予定です。

データ・アナリティクス入門

仮説とデータで見える成功術

A/Bテストの条件は? A/Bテストを行う際には、条件を揃えることや分析対象を明確にすること、そして仮説に基づいた比較検証のポイントを絞ることの重要性を確認できました。また、課題解決に向けた顧客心理に着目したテキストや、ユーザーが行動しやすい要素が重要であると実感しました。 ファネル分析の重要性は? 日々のウェブマーケティング業務において、今回の課題事例から多方面で役立つ考え方を学ぶことができました。特にファネル分析は不可欠であり、全体のマーケティング戦略を踏まえた上で確実に設定し、日々の分析に活用していきたいと感じています。 新たな仮説はどう導く? 今後は、売り上げ向上を目指すサイト改善や広告のA/Bテストにこれらの知見を活かしていくとともに、単一のデータに頼るのではなく、関連する複数のデータを俯瞰的に捉え、そこから新たな仮説を導き出す取り組みを深めていきたいと思います。

クリティカルシンキング入門

イシューで問題解決の道筋を明確に!

問いはどう考える? まず、重要なのは問い(イシュー)を立てることです。この問いは具体的であり、疑問文の形であるべきです。常に問いを考え続けることが求められます。たとえば、南守島のケースでは、データを様々な切り口で分析し、課題を特定し、その解決策を出すという一連の流れを理解しました。 イシューをどう整理する? 議論が多岐にわたると、イシューを見失うことがあります。そのため、一貫してイシューを意識するのが重要です。議事録のヘッダーにイシューを入れることで、会議の開始時にメンバー全員で確認し、共通の認識を持つように心がけると良いでしょう。 会議はなぜ確認する? 会議の最初には、イシューを全員で確認します。また、議論が逸れた場合には、軌道修正のために再度イシューを確認することが必要です。イシューが複数ある場合には、それを構造的に分解し、それぞれ個別に議論する場を設けると効果的です。

データ・アナリティクス入門

フレームワークで開く学びの扉

仮説はどう生まれる? まずは、3Cや4Pといったフレームワークを仮説の軸として活用することで、仮説をスムーズに構築できます。この方法により、偏った仮説や考慮漏れを防ぎ、網羅的かつ精度の高い分析が行えると感じています。 私の仮説偏りはなぜ? また、私自身、問題解決のための仮説設定が思いつきやすいものに偏りがちであることを実感しています。そこで、今後はまず3Cや4Pなどの軸に基づいて仮説を網羅的に洗い出す手順に見直すことにしました。これにより、より体系的かつ客観的なアプローチが可能になり、問題解決の効率も向上すると考えています。 実践はどう進む? 具体的には、最初に3Cや4Pを活用して課題に対する多角的な視点を整理し、次に各軸に沿って仮説をリストアップ、優先順位を付けながら検証を進めます。最後に、検証結果をフィードバックし、再度仮説を見直していくプロセスを実践していく予定です。

データ・アナリティクス入門

ひらめきを引き出すMECEの力

MECEでどう選ぶ? アイデア出しのプロセスで、MECEという手法を用い、全体像の中からアイデアを絞り込む方法が特に印象に残りました。たとえ評価基準で最終的に採用されないアイデアであっても、いったんすべて洗い出して評価することで、新たなチャンスや問題点を発見しやすいと感じました。 階層分析で何が見える? また、プロジェクトにおけるアイデア出しでは、階層ごとに分析することで、さまざまな発想が生まれやすくなる可能性を実感しました。同じく、課題を分析する際も、階層別や変数別に整理することで、より具体的な問題点に焦点を当てることができると感じました。 なぜ体感するのか? 現在は、アンコンシャスバイアスの解消を目指した若手ワーキング向けのフレームワークを企画しています。その一環として、MECEを取り入れたグループワークの時間を設け、同僚と一緒に体感する場面を設定したいと考えています。

データ・アナリティクス入門

新発見!数値が語る学びの軌跡

代表値の選択は? 代表値について、どのケースでどの値を選ぶのが適切か、具体的な例を交えて理解できました。これまであまり馴染みのなかった加重平均、幾何平均、標準偏差を正しく認識できたことが大きな学びとなりました。 申し込み数の平均は? イベントの日々の申し込み数を算出する場合、たとえばメルマガなどこちらからのアクションがあるかどうかで数値が変わるため、単純平均ではなく加重平均を使用する方法が適切だと感じました。普段見慣れている数字が大きく変化する可能性を実感しました。 目標設定はどう? 今後は、過去の学習内容を振り返り、まず自分が何を達成したいのかという目的を明確にすることから始めたいと思います。その上で、どの代表値を用いるべきかを検討する必要があると感じています。経験や知識が十分でない部分は、AIのサポートも活用しながら、徐々に自分の中に定着させていきたいと考えています。

「出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right