クリティカルシンキング入門

見せ方で引き出す活発な意見交換の力

グラフ作成の重要性とは? 読み手の目の動きや理解しやすさを考慮しながら、丁寧にグラフを作成する重要性を学びました。作成時間に制約がある中で、見せ方にこだわりすぎることはできませんが、最小限の努力で最大の効果を発揮するための思考が養われました。 活発な意見交換を促すには? 年度計画策定時の振り返りや顧客向けイベント企画のプレゼンテーション作成時には、多様かつ適切な見せ方によって、活発な意見交換を促すことができます。これにより、メンバー同士や顧客との円滑なコミュニケーションが図られ、さらなるアイデアの創出を目指しています。 誰にでも伝わる工夫とは? また、直接その業務に関わっていない方々にも、スムーズに理解してもらい、訴求力を備えた内容にするために工夫を凝らしています。文章や情報の羅列に終わらせず、見せ方に注意を払い、配慮の行き届いたものを提供するよう努めています。

データ・アナリティクス入門

フレームワークで未来を拓く

3C・4Pの活用法は? 3C・4Pなどのフレームワークを活用して仮説を立てる重要性を改めて実感しました。なんとなく思いついた仮説では、他に考えられる可能性を見逃してしまう恐れがあります。一方で、フレームワークを用いることで、仮説の検証に必要な分析も効率よく進められるようになりました。 株式事務の仮説立案は? また、株式関連の事務においては、過去の経験や従来の分析結果に捉われず、さまざまな視点から仮説を立て、検証していくことが大切だと感じています。そのため、3C・4Pを活用し、複数の仮説を意識しながら業務に取り組むよう努めています。 実務検証の流れは? さらに、実際の業務では4P・3Cのフレームワークを使って分析を行い、課題に対して複数の仮説を出すことを徹底しています。そして、仮説の検証に必要なデータの抽出や分析も合わせて行うことを意識して作業を進めています。

データ・アナリティクス入門

問題解決と最適化に役立つ具体的手法を学ぶ

問題解決の順序がカギ? 問題解決のプロセスについて、「What、Where、Why、How」の順に進めることの重要性を再確認しました。問題理解と適切な対策を講じるためには、なぜなぜ分析を行い、真の原因を見つけ出すことが不可欠です。このプロセスは、提案時の逸注分析やプロジェクトのトラブル、営業活動におけるクレーム対応などの場面で活用できます。 A/BテストでCROを最適化するには? また、A/BテストがWebマーケティングにおけるCRO(コンバージョン率最適化)の手法の一つとして有効であることを学びました。この手法は事業プランの策定時にも有効です。具体的には、異なる案を用意して比較し、優れた点を組み合わせてブラッシュアップしていく方法です。マーケットプランにおいても、自社案と協業先の案を出し合い、検証や補完を行うことで、より確実なプランを作成することができます。

データ・アナリティクス入門

仮説×分析!新たな解決のヒント

仮説検証はどう進む? 問題解決においては、複数の仮説を立て、その仮説を迅速に検証していくプロセスが重要です。特に、3Cや4Pといった既存のフレームワークを活用することで、仮説の立案は効率化し、スピードが向上します。 分析方法は何が変わる? これまで、webサイトの売上やアクセス分析においては、場当たり的に変動要因を探っていた面がありました。しかし、3Cや4Pなどの枠組みを取り入れることで、従来気づかなかった切り口や新しい視点からの仮説を導き出すことが可能になると実感しました。 選択肢は広がる? また、3Pや4Cをはじめとする各種フレームワークを再度学ぶことで、仮説の立案における選択肢が広がります。どの状況にどのフレームワークが適しているのかを理解し、これらを積極的にwebサイト分析に活用することが、より効果的な問題解決につながると考えます。

デザイン思考入門

アイデアの種が芽吹く瞬間

ブレインストーミングはどう? ブレインストーミングは、取り組みやすい手法だと感じました。個人でも実践できるとのことで、日々の業務のなかから一つ以上の要素を抽出し、それに対して自分なりの改善点をたくさん考えてみることができそうだと思いました。 SCAMPER法はどう? また、実践演習ではSCAMPER法を用い、普段意識しない視点から物事を考える機会が得られました。十分に洗練された状態のものに対しても、「もっと削れないか」や「代わるアイデアはないか」といった異なる視点から検討することで、さらに良い結果が生まれる可能性を実感しました。 どうやって大量発想する? 単純なアイデア出しであっても、やみくもに考えるのではなく、さまざまな手法があることを学びました。いずれにしても、最初はアイデアの量を重視し、まずはたくさんの考えを出すことに専念しようと思います。

データ・アナリティクス入門

どのデータを集めるかが未来を決める

比較の重要性を再考する 分析の本質は比較であることを学びました。これまで、比較対象の選定や要素の統一が不十分だったため、正確な分析ができていなかったと感じます。特に、生存者バイアスがかかってしまうことが多かったことを反省しています。 実証実験で得る結果は? 新規事業を創出する部門に所属しているため、秋から行う実証実験ではデータの適切な分析と比較対象の正確な選定を心掛け、意味のある結果を得たいと考えています。また、取得したいデータの設計も行い、目的に合った実証実験を行いたいと思います。 適切なデータ設計とは? 実証実験の目的を再確認し、成功と見なされるために必要な情報を考えます。どのようなデータを取得すればよいかを設計し、それを企画に反映させます。分析の本質は比較にあることを常に念頭に置き、適切な比較対象を設定することを意識して進めていきたいです。

デザイン思考入門

ターゲット意識とプロトタイプの挑戦

プロセスをどう捉える? 板のデザインについて、どこがデザイン思考のプロセスに沿っているのか、またどこがそうではないのかを考察することで、デザイン思考の範囲が整理できたと感じます。特に、ターゲットの選定に関して、これまであまり意識していなかった点に気付かされ、今後はターゲット意識をより一層持って取り組んでいく必要性を感じました。 短研修で何が変わる? また、研修設計および実施に携わるチームを率いる中で、ショートバージョンの研修を試行しながら、参加者の反応やフィードバックを取り入れ、数多くのプロトタイプを作成することの重要性を再認識しました。さらに、上司と部下の1対1やOJTの質を高めるために、必ずしも長時間を割く必要はなく、30分程度のライトなセッションでも、気づきや学びを得られる施策をチームで議論し、数多くのアイデアを生み出すことに意欲を持っています。

クリティカルシンキング入門

問題の本質を見極める重要性とは

問題の本質は何? 最初から考え始める際、答えを出すことに集中してしまい、何を明確にしたいのかを考えずに問題の本質を見逃してしまうことが多くあると気付きました。そこで、イシューを通じて問題の本質を明確にすることから始めることが大切だと思いました。 課題の焦点はどこ? 問題が発生した際、顧客の課題を明確にする必要があるときには、どうしても先のことを考えてしまい、足元の課題を見落として進めてしまうことがあります。まずは問題が何で、どこに焦点を当てるべきかに注目し、整理してから問題に取り組むよう心がけます。 分析のポイントは? 顧客の状況から課題を見つけて分析する際に、目先のゴールを気にするあまり急いでしまわないように心がけています。今何が問題なのかを明確にし、その問題を解決するためにはどのようなパターンが考えられるかを把握し、分析を進めていきます。

リーダーシップ・キャリアビジョン入門

対話で築く信頼のリーダー像

リーダーシップの基本は? リーダーシップは、ポジションや地位に依存しないものだと考えています。自分が高い地位にあるからといって、他者に「こう行動せよ」と強制するのは効果が薄いという認識が大切です。まずは、自己の現状や行動特性を理解し、弱点をしっかりと把握することで、信頼関係を築く基盤を作ることが不可欠です。 地位依存の限界は? また、地位に依存するリーダーシップとは異なる形を認識することが第一歩となります。具体的には、行動に移す前に全体を俯瞰し、物事や組織の在り方について深く考える姿勢が求められます。 効果的な指示は? さらに、職員に指示を出す際には、彼らが置かれている状況を十分に理解し、まずはヒアリングを行うことが重要です。こうしたアプローチを通じて、リーダーシップをどのように組織内で効果的に発揮していくかを考えることが求められます。

戦略思考入門

3C×SWOTで描く未来戦略

3CやSWOTをどう活かす? 3C、SWOT、バリューチェーンの3つの方法について学びました。各用語の意味は理解できたものの、実際の業務への適用となると難しさを感じました。特に3Cでは、自分自身と相手をしっかり把握し、そこからゴールへの最速・最短の道筋を導き出すことが重要だと感じました。また、SWOTとバリューチェーンを組み合わせることで、より広い視野で現状を考察する意識が芽生えました。 競合対策はどう進める? 対競合の観点からは、製品の作り方や工程を見直し、自社の強みと弱みを徹底的に分析する必要性を実感しました。さらに、試作や開発の段階から製造の視点を取り入れ、開発部署と密に連携することで、量産開始後のトラブルを減らせる体制づくりが不可欠だと考えます。こうした取り組みによって、プロジェクトの最速・最短なゴール達成を実現していきたいと思います。

クリティカルシンキング入門

分解力で誤解を防ぎ、データ活用スキルを伸ばす

分解法は正しい? 分解することで原因の特定が容易になることを学びました。しかし、分解の過程では、常にその手法が正しいか自問することが重要です。そうしないと、分解したデータに誤った解釈をしてしまい、思い込みによる原因の特定につながる可能性があります。 売上の分析はどう? 売上を算出する際には、その目的を明確にしたうえで、効果的な視点からアプローチすることが大切です。これを意識せずに進めると、成果に結びつかないことがあると学びました。したがって、意識的に効果的な算出を心がけます。 報告の伝わり方は? また、売上算出にはデータ抽出の明確な目的を持ち、その目的に沿った効果的な切り分けを実施します。さらに、その算出結果を上司に確認してもらい、伝えたい内容が明確に伝わっているかを検証します。わかりにくい点があれば、その都度改善を行っていきます。

データ・アナリティクス入門

データ活用で見えた新たな気づき

平均値の選び方は重要? 平均値には様々な種類があり、その選択はデータに大きな影響を与えます。外れ値がある場合、平均値よりも中央値を採用することが重要であり、データのばらつきを数値で示すために標準偏差を使用することが効果的であることを学びました。 輸送会社ごとの加重平均とは? 私たちの事業所で使用する輸送会社の使用率を考慮し、加重平均を採用することで、待機料などの平均額をより正確に把握することができると考えました。 データの明確化を目指して 費用や作業時間を集計するアプリを使い、加重平均と標準偏差を計算することで、数値の差を明確化し、より精度の高い平均値の算出を目指しています。 実績データとの比較はどうする? これらの処理結果として得られた加重平均値を基に、毎月の実績データと比較し、データの妥当性と信頼性を確認する予定です。

「出す」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right