データ・アナリティクス入門

成長の瞬間:成長と仮説力の融合

振り返りで何を学んだか? Week1からWeek6までの講義や演習を振り返り、私の中では「つい決め打ちしてしまう」という考えが消え、多くの仮説を立てられるようになりました。これにより、今後の仕事における課題解決や成果につながると感じています。特に、今回のライブ授業での陶芸体験の演習では、様々な仮説や解決策が瞬時に思い浮かび、考えることに対して柔軟になったと感じました。 少しずつ成長していることを実感し、自分が勉強や学ぶことが好きだということを改めて思い出しました。 オウンドメディアでの検証方法は? 弊社のオウンドメディアにおける検証については、まずSEO数値分析やユーザー導線の見直し、SEOコラムのオーガニック増加をMECEで分類し、細かく分析しました。影響力の大きい分類だけでなく、%が少なくても重要視すべき分類もあるかもしれないので、細分化しました。6つくらいの大分類に分けてリライトの優先順位を決めました。 新規ユーザー獲得への取り組み 自社のWebサービスについても、以下のように活用しています。 1. 新規ユーザー獲得導線の増強に活用(Google広告のKWD分析など)。 2. 現在のユーザーに関しても分析し、新規獲得に活用。 まずは、自分のマーケティング、メディア制作、CS効率化などのタスクを明確化し、最終ゴールである新規会員登録増加と正しいKWと属性のユーザー獲得の仮説を検討しました。その後、スケジュールを立ててチームに共有。これにより、新たな発見や課題が出ることを期待しています。 3Cと4Pフレームワークの活用 また、オウンドメディアからの新規ユーザー獲得について、メディアの3Cの内「市場」と「競合」を4P(商品、価格、場所、プロモーション)フレームワークを活用して網羅的に検証しました。既存ユーザーに対しても同様に4Pフレームワークを活用し、ゴールまでの仮説を立てました。 Webメディア運用での問題特定法 自社Webメディアの運用では、現状の問題を特定し、What、Where、Why、Howの各要素に分けて進めました。また、A/Bテストやサイト上でのサムネイル策定、広告でのABテストに時間をかけ、効果を出していきたいと考えています。 原因をプロセス分解し、ボトルネックをきちんと把握することが課題解決の近道です。正解はないので、広く視野を持ちトライアンドエラーの精神で、複数の選択肢を視野に入れサイクルを構築。短期・長期のモデルを検討しながら結果をしっかり分析し、最大限の効果が現れるように、その見極めができるようになりたいと考えています。

データ・アナリティクス入門

逆算で探る課題解決のヒント

結果から問題設定は? 問題や課題を解決するには、ただ漠然と分析するのではなく、まず結果から逆算して問題を設定し、その根本原因を把握することが重要だと学びました。表で示されたデータを図に起こすことで、全体像を俯瞰しやすくなり、どこに課題が潜んでいるかを明確にできると感じました。 数字の裏側は? また、計画値と実績値のギャップが全体にどの程度影響しているかをパーセンテージで示すことは、単なる数字の大小だけでなく、その背後にある要因を突き止め、分析の精度を高める上で有効です。単に数字が大きいという事実に注目するだけでなく、継続して損失が出ている状況など、現場での定性的な情報も加味し、何を最優先で分析すべきかを決めることが大切であると感じました。 分析の切り口は? さらに、すべてのデータが整っているわけではないため、まずはどの切り口でデータ分析を行うか、仮説を立てた上で手元のデータを整理、収集する姿勢が求められます。データに向かう前に、視野を広げ多角的に問題を捉える体制を整えることが鍵となります。 現状と理想は? また、現状(as is)と理想(to be)のギャップを明確にすることが重要です。何を理想とするのか、どこにギャップがあるのかという点を関係者全員で合意することが、問題解決のスタート地点になると理解しました。 解決策の整理は? 問題解決には、改善を目的とするアプローチと、さらなる向上を目指すアプローチの2つがあり、ロジックツリーのような思考整理のツールは、全体を複数の要素に分けて検証する際に非常に役立つと感じました。具体的には、層別分析や変数分析などを駆使して、細部にわたる解決策を検討することが効果的です。 その他の注意点は? 加えて、全体の中で『その他』に分類される割合が大きくなる場合は、データの切り分け方が適切かどうかの見直しも必要です。数値上は少数であっても、影響力が大きい要素には十分な注意を払うことが重要だと思いました。 戦略分析はどう? 広報戦略や施策の検討においても、ロジックツリーなどを活用し、どの視点からデータを分析すべきかを考えることが有効だと感じています。また、ウェブから得たデータを単に眺めるのではなく、具体的な問題や課題を設定し、何を知りたいのかを明確にすることで、分析の精度を大いに高めることができると思いました。 定性情報は何? こうした定量的な分析に加え、定性的な情報も取り入れる事例を学ぶことで、納得感を持ちながら現場の試行錯誤をより深く理解できるようになったと実感しました。

クリティカルシンキング入門

データ分析で知る深掘りの楽しさ

何を学んだ? 今回特に学んだことは以下の3点です。 全体定義はなぜ? まず、問題に取り掛かる際は全体を定義することが重要です。いきなり分解や分析に入るのではなく、どのような回答となりそうかを想像し、仮説を立てることから始めます。その後、その仮説を検証するための分析方法を実施します。 MECEって何? 次に、MECE(Mutually Exclusive, Collectively Exhaustive)を意識することです。データを分析する際、漏れなくダブりがないかをチェックします。MECEが守られていない場合、分析結果が正しく事象を表していないことになり、本質を理解するためにこの考え方は重要です。 疑問で深掘りする? 最後に、結果が出ても「なぜ?本当に?」と繰り返すことです。分析結果が出た際に、それが正しく事象を表せているのか、なぜそのような結果になるのかを2~3回と深掘りして追求します。この過程で、異なる切り口での分析や、データ自体の見直しを行うことで、深い理解につながり、正しい答えにたどり着けるものと考えます。 現場で生かせる? 私は他部署で発生した事象について報告する業務が多いため、そこで学びを活用したいと思っています。たとえば、事業会社の売上実績を自部署内の会議で報告する際や、サプライチェーンの原材料調達コストの分析、新規プロジェクト立ち上げ時の計画立案などです。それぞれの場面で、様々な切り口で考え、MECEに基づいた分析を行い、結果を深掘るといったサイクルが非常に有効であると考えています。 データ報告の秘訣? 具体的な業務の中で、事業会社の毎月の売上実績を自部署内で共有する場面があります。ここでは、以下のように進めています: 定義の要点は? まず全体を定義します。事業会社から提供されるデータをもとに、いきなり売上や利益、単価の推移などを見るのではなく、何を部署内で共有するべきか、ポイントは何かを意識して仮説を立ててから分析に入ります。 分析は整ってる? 次に、MECEを意識します。その月の重点事項を決めたら、売上や利益、エリアや商品といった切り口で漏れなくダブりのない分析を進め、重点事項が正しいかどうか検証します。 結果の真意は? 最後に、結果が出ても「なぜ?本当に?」と繰り返します。もし仮説通りの検証結果が得られた場合でも、それが本当か確認します。異なる切り口からの確認も行い、事業会社から提供されたデータの数値を元に読み解くことを続けていきます。

データ・アナリティクス入門

データ分析の真髄に迫る学びの旅

データ分析の基本とは? まず初めに、データ分析の大前提として「データは分析し結論を導き出すための情報・数値であること」と「分析の本質は比較であること」が言語化されていたことが印象的でした。これにより、分析の目的や方法を再認識することができました。 目的を見失わないためには? 分析の目的を見失わないこと、目的を果たすために適切な仮説を立てることは重要です。しかし、実際には想定結果が出ず、焦ってデータ収集をやり直すことや、仮説が間違っていて最初からやり直すことが多々ありました。これは、深く考えることが不足しているからだと改めて気づきました。 効果的な比較対象の選定法 また、比較の対象を選定する際、分析する要素以外の条件を揃えることができていなかったように思います。さらに、分析結果をもとに意思決定を行うためには、どのようなデータをどう加工すると伝わりやすいかを理解することも欠かせません。データの種類に応じた加工法やグラフの見せ方ができていないケースが多く、自己満足に陥っていたと感じました。 第三者の知識をどう活かす? これからは、まず自らしっかり考え、第三者の知識や知見・知恵を借り、フィードバックを活かすことが重要であると再認識しました。 次期中期計画にどう活かす? 次期中期事業計画の策定時には、現状を振り返り、次期中期計画を「なぜその目標を設定するのか」「なぜそれを独自性(強み)と仮定したのか」「なぜそれをやる/やらないと仮定したのか」「現経営資源を踏まえた場合、なぜその方針が妥当なのか」と問うことで、分析結果を用いて説得力を持たせたいと考えています。「目指すべき目標を明確にする」「独自性(強み)を持ち自覚する」「やることとやらないことを峻別する」「目標までの道のりの妥当性を示す」これらを一つずつ丁寧に進めていくつもりです。 ゴールをどう明確にする? バランススコアカードを用いて現在の中期計画の問題点を再考し、新たなビジョンと戦略を立てるためにゴールを明確にし、その達成策を明示します。戦略マップを作り、戦略の構造化を図ることで、分かりやすいアクションプランを立てたいと考えます。データ分析に基づくことで、より良い意思決定ができると信じています。 初めての取り組みに挑むには? 初めての取り組みが多いですが、「自ら深く考える」「第三者の知識や知見・知恵を借りる」「フィードバックを活かす」ことを繰り返し、関係者全員にとって有益な中期計画にしていきたいと考えています。

データ・アナリティクス入門

数字が魅せるSNS成功ストーリー

計算重視で成果は? 数値で表れない効果を具体的な数値に置き換える方法は非常に新鮮でした。直感だけに頼るのではなく、計算に基づいてコンバージョンレートを算出し、その結果を判断に反映させる重要性を、改めて実感しました。理論的に考えることの大切さを実体験として再認識できました。 SNS戦略はどう考える? 各SNSの特性を踏まえ、効果を最大化するためのアプローチを分析に基づいて決定する必要があると感じました。特にFacebookでは、以下の点がフォロワー以外のユーザーにリーチし、リーチ数やシェア数が向上する要因として考えられます。まず、ユーザーにとって有益で興味深い情報が含まれるコンテンツは、シェアされやすい傾向にあります。次に、画像や動画などの視覚的要素の活用が、ユーザーの関心を引き、シェア拡大につながります。また、ユーザーがオンラインで活発な時間帯に投稿することで、全体のリーチとエンゲージメントが向上することが期待できます。さらに、質問や呼びかけを通じたユーザーエンゲージメントの促進、適切なハッシュタグの使用、そして他のページやインフルエンサーとの連携も、投稿の拡散に寄与する重要な要素です。 インスタ投稿の極意は? 一方、Instagramでのリーチ数やシェア数を高めるためには、いくつかの施策が効果的です。投稿頻度を1日1回以上にすることで、多くのユーザーに接触する機会が増加します。また、ターゲットユーザーがアクティブな時間帯を分析し、最適なタイミングで投稿することがリーチ向上に大きく寄与します。さらに、再投稿を避け、独自のオリジナルコンテンツを作成することは、Instagramのアルゴリズム上も優遇されるため有効です。関連性の高いハッシュタグの活用や、コメントなどを通じたユーザーとの積極的なコミュニケーション、そして「いいね+フォロー」などの参加しやすい条件でのキャンペーン投稿も、投稿の発見性やエンゲージメントを高める効果が期待できます。これらの施策により、投稿が「発見」タブに掲載される可能性も高まります。 データで最適化する? また、2月のSNS投稿の各コンテンツ別の結果をまとめ、そのデータに基づいて仮説を導き出す時間を確保する必要があります。CFMの効果最大化には、シェアされることと夕方以降の投稿が鍵であると考えています。アクティブな時間帯に投稿しているものの、Instagramでの投稿内容や曜日についても、仮説を立て、会議で検討するべき点が多いと感じました。

クリティカルシンキング入門

数値分析にひたる楽しさを発見

数字の分解をどう進める? 数値を分析する際には、その分解が重要です。まず、視覚的に数字を分解する方法として、グラフや率に変換することで、新たな視点が得られます。また、年齢別、男女別、天候、曜日、時間軸、新規既存、場所、近隣施設、売場面積など、あらゆる角度から数字を分解することで、様々な発見が可能です。繰り返し分解することで、新たな傾向が見えてくることもあります。分解しても何も見えない場合は、他の切り口を試してみるのが良いでしょう。 数字分析の重要ポイントは? この分解の作業は、まるでダンジョンを探検するようなもので、新たな気付きを得るほどに面白くなります。しかし、無秩序に進めるのは危険です。そこで、MECE(ダブりなく・モレなく)を意識し、網羅的な数値の切り口を探すことが重要です。また、期間、金額、人数などの下限値や上限値を定義して分解するのも効果的です。 おすすめの分解手法は? 分解手法としては、以下の3つをおすすめします。 1. 層別分解:全体を2つ以上のグループに分ける方法です。例えば、年齢別や所得別に分解します。 2. 変数分解:売上や単価、販売数をもとに、利益率や原価率などに変えて分解する方法です。 3. プロセス分解:入店前、入店後、商品選択・支払い・退店などのプロセスごとに分解する方法です。この手法は、業務効率の改善にも役立ちます。 プロセス分解で何が見える? クライアントからの相談や自分たちの業務効率改善において、プロセス分解は非常に有効です。業務プロセスのどの部分で時間を使っているのか、その部分をさらに細分化し、どの作業に時間がかかっているのかを分析します。それにより、課題解決に繋がり、業務効率改善や業務内容の見直しなど、幅広い提案が可能となります。 問題解決へのステップは? プロセスに着目しながら業務を遂行することで、偏りを拭う習慣をつけ、問題のあるプロセスを分解してみることが大切です。その結果から多くの気付きを得て、解決の糸口を探りましょう。導き出した答えを他者と共有し、さらにブラッシュアップすることも重要です。これにより、3つの視点・視座・視野を広げることができます。 行動計画をどう立てる? 最後に、これらを活用するために計画的なトレーニングを行いましょう。まずは行動計画を立てることから始めて見てはいかがでしょうか。

データ・アナリティクス入門

対概念で拓く経営戦略の新視点

対概念の意義は何? 対概念とは、ある概念に対して反対または対照的な意味を持つ別の概念を考えることで、物事をより明確に理解し議論の幅を広げる手法です。問題解決に取り組む際は、原因をプロセスに分解する方法、複数の解決策を根拠をもって絞り込む視点、A/Bテスト方式を活用した実践検証、そしてデータ分析を組み合わせた段階的な課題抽出と検証の流れが重要となります。 M&Aリスクはどう考える? 例えば、M&A案件のリスク評価と意思決定においては、ポジティブな要素であるシナジー効果と、ネガティブな統合リスクを対概念として捉え、財務リスク、組織文化、オペレーションといった要因に分解して考えます。各リスク要因を定量化することで、M&A後の成功確率を高めるためのより正確な判断が可能となります。 統合戦略はどれが最適? また、企業の経営戦略策定、特にM&A後の統合戦略においては、段階的統合と急速統合という二つのアプローチを検討し、A/Bテスト方式でそれぞれの効果を比較します。統合プロセスの進捗データや業績、従業員満足度といった具体的な指標をもとに、どちらの戦略がより良い成果を生むかを実証的に評価していきます。 リスク評価の秘訣は? さらに、リスク評価のためのフレームワーク作成では、過去の成功事例や失敗事例をデータベース化し、財務、組織文化、オペレーション、市場環境といった指標を基にリスク評価シートを作成します。これにより、各案件ごとのリスクが客観的に評価され、精度の高い投資判断を導き出すことが期待されます。 定量化結果は何? 続いて、データ分析を用いた定量化では、財務データや従業員エンゲージメント、企業文化の適合度を測る指標を設定し、回帰分析や相関分析を活用します。特に、文化の不一致が従業員の離職率に与える影響などを数値化することで、過去のM&Aデータから成功パターンや失敗パターンを明らかにし、これを次の意思決定に生かすことが可能となります。 結果の信頼はどう確保? 対概念とA/Bテストを通じて物事を深く理解しようとする姿勢は非常に評価できます。今後は、どのような状況で対概念を活用するのが効果的か、またA/Bテストで得られた結果の信頼性をどのように確保していくかといった点について、さらに思考を深めながら実践につなげていくことが求められます。

データ・アナリティクス入門

目的を導くデータの羅針盤

最初に何を明確に? 分析に着手する際、何から手をつけてよいのかわからない状態でしたが、まずは「目的」を明確にし、何を知りたいのか、また改善点につなげるにはどうすればよいのかを意識しながらデータと向き合うことが大切だと実感しました。その上で、データ分析の前段階として、比較対象となる条件を整理し、どの条件や項目を設定するかを精査することが、結果の精度を高める鍵であると理解できました。 整理方法はどうする? 授業からは、細かい点まで明確に比較できるように各要素を分けて整理する方法や、項目を一覧化して理路整然と進める手法を学びました。また、その調査結果の意味や期待される効果について問いかけながら項目を設定する重要性、そして各データ項目ごとの感覚の違いを補うために他のデータを参照する必要性についても示唆を得ました。さらに、数字を加工して割合を算出しグラフ化する際は、情報の性質に応じたグラフ(要素間の割合には円グラフ、上下の数値比較には縦棒グラフ、要素間の比較には横棒グラフなど)を効果的に用いる工夫が求められると学びました。場合によっては、実数そのままで比較したほうが効果的なケースもあるという点も印象的でした。 ビッグデータをどう見る? また、スモールデータとビッグデータの違いに触れ、ビッグデータを扱う際には「クレンジング」に注意し、類似性の高いデータを抽出することで、過去のデータを新たな価値に変えていくプロセスの重要性も認識しました。データ分析は、目的と仮説に基づいた切り口の設定、データ収集、加工、発見、そして結論へのプロセスを着実に踏むことが不可欠で、見えている加工データと状況や根拠に基づいた解釈とを組み合わせることで、より説得力のある分析結果が得られると感じました。 広報戦略はどう考える? 具体的な広報戦略を考える際には、施策を大項目から小項目へと段階的に設定し、戦略の目的に沿ってPRのアイディアを複数仮定しました。その上で、各ツールの選択肢や条件を一覧化し、データを当てはめて比較検討することが効果的であるという実践的なアプローチも印象深かったです。 グループ作業はどう? グループワークでは、見えている加工データに状況や他の根拠・解釈を加えて分析する手法が強調され、その具体的な組み合わせ方や実例について、さらに深掘りして聞いてみたいと感じました。

データ・アナリティクス入門

データ分析で見つける新たな視点

データ分析における比較の重要性とは? データを比較することは、他のデータと比較することでその意味合いを読み取ることにあります。繰り返しになりますが、「分析は比較なり」が重要です。単純な平均では見落としやすい情報を把握するために、データのビジュアル化を駆使し、バラつきを視覚的に理解することが求められます。比較を行い、グラフを解釈することで仮説を立て、その結果として次に分析すべきデータや分析の深掘りの方向性が明確になります。 代表値だけで十分か?アプローチを考える 大量のデータを比較するアプローチについて考える際、代表値の使用だけではデータの分布状況がわかりません。データの分布を考慮するために、標準偏差を併用します。標準偏差が大きければバラつきが大きく、小さければデータが集約していることを意味します。また、データをビジュアル化することも重要です。実際の業務では、加重平均とデータのビジュアル化が主に行われています。 代表的な数値には以下のものがあります: **代表値** 1. 単純平均 2. 加重平均 3. 幾加平均 4. 中央値 **散らばりを表す数値** - 標準偏差:標準偏差が大きいとデータがばらつき、小さいとデータが集約している。正規分布と2SDルールも考慮します。「起こりにくいことが起こっている」という実感値は5%です。 分析の深化にはどのプロセスが必要? 分析の内容に応じた代表値を使い、内容に応じたビジュアル化の方法を考えることが大切です。案件の特徴を「プロセス×視点×アプローチ」で分析することに重きを置くと良いでしょう。会社の施策展開にあたっても、目的に応じた比較を行い、ビジュアル化し、そこから仮説を立てて分析を深めていくサイクルを徹底していきます。過去の導入事例から仮説検証を行い、どの層にヒットしているかをビジュアル化し、現在進めているターゲティングの選定を進めていくことが求められます。 学びの共有はどのように行う? まず、メンバーにWEEK3の学びを共有し、現在取り組んでいる施策のターゲティングに役立てたいと考えています。根拠のあるデータを作成し、より良い意思決定に繋げることが目標です。代表値と標準偏差の仕組みを理解し、必要に応じて使い分けるために、日常の業務に取り入れてみることから始めましょう。

マーケティング入門

ニーズの深掘り!ビジネス成功の鍵

顧客ニーズを探る重要性 WEEK.02では、「顧客のニーズ」について深く掘り下げた内容を学びました。普段は何気なく使っていた「ニーズ」という言葉がビジネスにおいて重要である理由を具体的に理解できたことは、大きな学びでした。 ニーズとは何なのか? まず、「ニーズ」という言葉は単なる「~したい」という欲求を超えたものであることがわかりました。表面的なニーズだけでなく、相手が気づいていない本質的な欲求を捉えて、具体的に提案することが大切です。このような深い欲求を「インサイト」として明確にし、何のために「~したい」のか、「◎◎が欲しい」のか目的を深堀りすることが求められます。 なぜニーズが大切なのか? ビジネスを進める上で、さまざまなシーンで優位性を保つためにニーズの理解が重要です。「ウォンツ」と「ニーズ」の違いもここで明確にされました。「ウォンツ」は分かりやすいが、競合が多く価格競争に陥りやすいのに対し、「ニーズ」は競合や顧客すら気づいていないインサイトを明らかにできればビジネスチャンスが高まります。逆に、ニーズを捉えられないと価格競争に巻き込まれたり、的外れな商品開発やプロモーションにつながります。 覚えやすいネーミングの秘訣 ネーミングは「覚えやすく」「ユニークで」「用途を連想しやすい」ことが重要です。また、商材や市場は自社の強みを活かせるものや場所が良いと考えられます。さらに、「ニーズ」に限らず、「ペインポイント」を見つけて「ゲインポイント」に変えることも大切です。これはカスタマージャーニーを行いながら、エスノグラフィーを重ねていくことで実現し、常にアンテナを立て続けることが求められます。 業務改善にどう役立つか? 新規受託業務や既存受託業務の見直しにおいて、この知識は非常に役立つと感じました。具体的には、新たな業務を現場や他部署から請け負う際や、既存業務のブラッシュアップに繋げられます。また、営業における機械購買や店内構成、広告宣伝、販売促進にも活用でき、結果が早く見えそうです。 今後、来期に向けた改善や提案の場で、この学びを活かした資料作成や数値分析を行い、「どうして改善する必要があるのか」「なぜその提案内容なのか」という点を、顧客ニーズの視点からプレゼンしたいと考えています。

データ・アナリティクス入門

細かい分析が未来を創る

原因をどう捉える? 問題の原因は、全体のプロセスを細分化して考えることで把握しやすくなります。原因を明確にするためには、各工程ごとに何が起こっているかを順を追って分析することが有効です。 解決策は何だろう? 一方、解決策を検討する際は、ひとつの案に固執せず、複数の選択肢を用意して比較することが大切です。判断基準を設定しておくことで、より説得力のある解決策にブラッシュアップすることが可能になります。また、本質的な施策を比較検討する際には、A/Bテストが有効です。比較したい要素を明確にし、他の条件をできるだけ揃えることで、テスト結果を効果的に実施策へ反映させることができます。 数値分析はどう見る? 事前の動画では、WEBマーケティングの分析においてアクセス数(ページビュー、ユニークユーザー、流入数)、サイト内行動(ページの回遊数、平均滞在時間、直帰率、再訪問率)、広告効果(クリック率、CPA)、および効果測定(コンバージョン)といった数値の重要性が紹介されました。現代のマーケティング環境では、顧客の購買体験がSNSの影響で複雑化しているため、マーケティングミックス(4P)の視点も必要不可欠です。 仮説はどう組み立てる? また、仮説の立て方については、まず知識を広げることで情報を耕し、そこからラフな仮説を作成するという大きな2ステップが重要だとされています。さらに、5Aカスタマージャーニーのフレームワークを活用することで、サービスとの出会いからファンづくりまでの流れを効果的に生み出すことが可能になります。 テストの効果は? 商品の活用状況が悪い場合や解約が増加しているときの対策としては、ポップアップでの案内や電話窓口の資料の強化といったパターンに頼りがちです。しかし、日常的にアプローチ(訴求面)のテストを実施しておくことで、急な数値低下に直面した際にも、事前のテスト結果を活かして迅速かつ効果的な対応が可能になります。現在、A/Bテストを実施している場面もありますが、担当者の発案に頼るのみで、年間で数回程度に留まっています。今後は、各施策の企画段階からテストの仕込みを意識することで、より計画的な改善が期待できるでしょう。

データ・アナリティクス入門

結果から逆算!あなたの成長戦略

問題解決はどう進む? 問題解決の方法として、「問題をステップに分け、結果(アウトカム)から逆算して分析する」アプローチは、限られた時間内で根本原因を明確にし、的確な打ち手を導くために非常に再現性の高い手法です。まず、期待する成果と実績値との差分を定量的に示すことで、組織内で認識を統一し、議論を「ズレの大きさ」に集中させます。次に、売上や費用などの成果指標を構成要素ごとにブレークダウンし、測定可能なKPIに紐づけることで、どの要因がどれだけの影響を及ぼしているかを明確にします。 分析はどこから始まる? 続いて、結果側から検証する「バックキャスティング」の手法を用い、大きく乖離している指標から原因を順次掘り下げていきます。得られた要因に対し、具体的な仮説設定とデータによる検証を行い、優先度の低い仮説は省くことでリソースの無駄を防ぎます。最終的には、検証済みの根本要因ごとに、効果と実行容易性を考慮したマトリクス評価に基づき、短期および中長期の施策を整理してアクションプランに落とし込むことで、関係者の合意形成と継続的な改善につなげることが可能です。 損益分析で何が分かる? また、事業別の損益実績表をもとにした問題解決にも、この「結果から逆算し要素を分解する」思考法は非常に有効でした。各事業の利益ギャップを数値で可視化し、売上要因や費用要因をツリー化して寄与度を算出することで、インパクトの大きい項目を即座に特定することができました。さらに、事業横断の共通課題と個別事業の固有課題を切り分け、優先順位を明確にした改善策を示すことで、部署間で共通のフレームで議論ができ、PDCAサイクルのスピードも向上しました。 改善策はどう組み立てる? 今後は、四半期ごとに提供される事業別の詳細データを活用し、売上、費用、各KPIを要素分解することで目標との差分を定量化し、根本原因の特定を進めます。その上で、次の四半期において改善効果が大きい施策(価格見直し、顧客セグメント別プロモーション、コスト構造改革など)を優先順位付けし、スケジュールと責任者を明確にしたアクションプランを提案していきたいと考えています。
AIコーチング導線バナー

「数値 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right