デザイン思考入門

顧客に寄り添う心に響く学び

顧客中心の真意は? デザイン思考の根本は「どこまでも顧客に関わろうとする人間中心」であることを理解しました。その特性から、仮説検証や分析に偏ったアプローチと比べると、ビジネスシーンでは特定の顧客に限定されたサービスや商品に偏りがちになるのではないかという懸念もあります。しかし、市場環境を考えると、初めから万人ウケするものを作るのはほぼ不可能であり、結果として「当たり障りのない、誰にもハマらないもの」に陥ってしまう恐れがあります。データや数値だけでは本当に解決すべき課題にたどり着くことはできず、市場拡大の基本としてアーリーアダプターを捉えることが重要だと考えています。 本質課題は何か? このような背景から、ヒット商品やヒットサービスを生み出すためには、まず具体的なペルソナを設定し、相手を深く知り、共感することから顧客の本質課題を発掘する必要があると考えました。さらに、課題解決に向けた柔軟な発想へとつなげられるのではないかという見方を得ました。 どこで成長する? この講座を通しては、①顧客の本質課題を引き出す手法、②相手への共感とその伝え方、③プロダクトの具体化に向けたビジュアル化の手法という3点を重点的に学んでいきたいと思っています。担当している商品の拡販戦略を検討する際には、顧客課題をより深く理解し、それをメッセージ作りに反映させること、そして顧客に寄り添い共感を伝えるコミュニケーションを心掛けたいと考えています。「当たり障りない」から脱却し、具体的なペルソナを通じて本質課題を引き出すことを目指します。 直近の実践は如何に? また、学んだスキルやフレームワークは、現状担当している社内研修の企画にも積極的に取り入れ、実践していく予定です。直近では顧客ヒアリングの機会があるため、講座で学んだことをすぐに生かし、次年度の実行計画策定の際にもデザイン思考のアプローチを意識して活用していきたいと思います。

アカウンティング入門

ビジネスモデル理解から財務分析までの学び

ビジネスモデルと数値の関係は? ライブ授業を通じて、「ビジネスモデルをとらえてから数値を読む」ことの重要性を理解しました。特に、具体的な事例を挙げられた際にはイメージしやすく、しっかりと理解できました。この考え方は、自分が現在理解している業界や業種以外のものを読み解く場合にも有効であり、情報を得るところから始めることが重要だと感じました。 学習プランの再構築は必要? 学習プランについては、予想通りに進めることができませんでした。再度プランを立て直し、生活スタイルに溶け込ませるような計画を作ることが必要だと実感しています。習慣化の難しさを改めて感じました。 財務諸表を判断基準にする意義 部品調達先選定や取引継続可否を判断する場面において、一つの判断基準としてP/L(損益計算書)やB/S(貸借対照表)の結果を取り入れることが有効だと考えました。取引先の状態を把握し(倒産リスクなど)、その情報を関係者と共有することで、次のアクションを迅速に起動できるようにしていきたいと思います。また、自社のP/LやB/Sの読み解きも続けていきたいと考えています。 B/S理解をどう深める? まずは、B/Sの理解度を整理することに努めます。その後、他社のB/Sを読み解き、自分なりの答えをまとめることで理解度を深めるつもりです。財務経理部門の方にも協力をお願いし、理解度をチェックする予定です(P/Lの時と同様に)。次に、取引先のP/Lや B/Sを読み解き、理解の定着を図ります。 学んだ知識をどう活用する? さらに、今回学んだことを共有することも考えています。人へ説明することで新たな疑問点が浮かび、それを解決することで理解力が向上すると期待しています。最後に、実務に取り込むための検討を行います。定期的に触れていかないと忘れてしまうため、実務の中で反映していくことが重要だと思っています。

データ・アナリティクス入門

分析で見つけた新たな発見と気づき

比較による効果測定とは? 分析とは、比較することである。まず、分析する項目を整理し、各要素の性質や構造をはっきりさせることが重要だ。何かの効果を測りたい場合、「ある」場合と「ない」場合で比較を行い、分析対象以外の条件も整える必要がある(これは「Apple to Apple」と呼ばれる)。 データ分析の目的と仮説 データ分析を行う際には、まず目的と仮説を立てる。例えば、データ分析の目的は何で、その結果どのような状態を目指すのかを明確にすること。そして、どの項目を分析すれば目的を果たせるのか、その項目をどのようにデータ加工すれば良いのかを考え、具体的な仮説を立てることが大切だ。 適切なデータ加工と表現法 データにはその種類に応じた加工法やグラフの見せ方が必要である。割合で表現するのが適切な場合と、実数(本来の値)で表現するのが適切な場合がある。また、質的データ(数値の大小に意味がないもの)と量的データ(数値に意味があるもの)の違いを見極める必要がある。 人事部門のデータ活用法 人事部門では、健康経営やエンゲージメントに関するデータを扱い、改善に向けた施策を企画することが多い。このため、データを活用して課題解決や目標達成のためのPDCAサイクルを効果的に回せるようにすることが求められる。これまでの施策参加者がどれだけ改善したか、「参加した人の中で●●をした人はより■■だった」といった分析を行うが、このためには、参加者と不参加者の間での比較を行うことが重要だと感じている。 目的設定と議論の重要性 まずは、目的を明確にし、自分自身の思い込みや仮説に偏らず、上司やメンバーと徹底的に議論することが必要だ。次に、課題に対して目指す姿を定量的にKPIとして設定し、現状を把握する。算出するデータに定義と根拠を持ち、それを分かりやすく伝えるスキルを身に付けることも重要である。

アカウンティング入門

数字の裏側に迫る経営革新の道

数字の背景を見た? 今週の学習で特に印象に残ったのは、財務数値の見方が「数字そのもの」ではなく、その背景や因果関係に着目することの重要性です。P/Lについては、売上や利益額だけでなく、利益率やコスト構造を確認することで、どこで利益が発生し、どこに改善の余地があるのかを探る視点を学びました。一方、B/Sでは、負債と資本という資金調達方法と、資産としての活用先を対比することで、資金繰りや経営の安定性を判断する手法を理解しました。さらに、P/LとB/Sを関連づけて分析することで、企業の全体像を立体的に把握できる点も大変有意義でした。今後は、こうした視点を業務改善に活かし、改善策が利益率や資金繰りにどのような影響を与えるかを明確に示せるよう努めたいと考えています。 活かす場面は何? ① 活用したい場面 請求・入金フローの改善やコスト削減の提案の際に、学んだ視点を活用したいと考えています。たとえば、請求処理の誤り削減や入金遅延の改善に取り組む際、P/Lの視点では改善による利益率向上、B/Sの視点では資金繰りや運転資本の改善効果を具体的な数値で示すことが可能です。 提案は伝わる? ② 学びを活用している姿 実際に改善案を経営層や関係部署に提示する際には、売上総利益率や回収サイトの短縮日数など、具体的な数値を用いて説明しています。その結果、「この改善により年間○○円のコスト削減や資金回収の短縮が見込まれます」と示すことで、提案の根拠が明確になり、納得感が高まっています。 改善行動は具体的? ③ 具体的な行動 月に一度、自部署のP/L・B/S指標(利益率や運転資本)を確認し、改善余地を探る習慣を取り入れています。また、各業務改善案ごとに数値効果を試算するフォーマットを作成し、改善施策の実施前後で数値を記録・比較することで、効果を可視化できる体制を整えています。

データ・アナリティクス入門

数字が照らす学びの道

どうやって特徴を捉える? 大量データを比較する方法として、まずデータの特徴をひとつの数字に集約し、グラフ化して視覚的に把握する手法を学びました。これにより、数値としての評価だけでなく、データの散らばりや傾向も同時に捉えることが可能になります。 平均値の違いを知る? 平均値や中央値を確認するために、単純平均、加重平均、幾何平均、そして中央値の各手法を比較しました。今まで単純平均や加重平均を主に用いていたため、このうち幾何平均と中央値の手順が分かっていなかったために、業務上物足りなさを感じていた点に気づくことができました。 分布の形はどう判断? また、データの平均的な分布をグラフ化することで、これまで感覚的に捉えていたデータの散らばりを、標準偏差などの具体的な数字として表現する必要性を認識しました。こうした数値化は、データのばらつきが大きいのか小さいのかを明確に捉える上で非常に有効です。 利用状況をどう見る? さらに、提供しているサービスの利用状況を単なる数の集計として週次報告している現状に対して、まだ活用できていないデータの中に、利用者の属性や利用時間帯などの詳細な情報が含まれているのではないかと考えるようになりました。これらを分析することで、サービスの改善点や利用者の利便性向上につながる提案が可能になると感じています。同様に、ライセンスやクラウドの予算についても、感覚的な予測に頼らずデータに基づいた数値をフィードバックすることで、より説得力のある結果に結びつくと考えています。 予測結果は合致? また、1年前に作成した将来のクラウド利用予測と現状を比較するタイミングを迎えたことから、その分析を活用し、利用していなかったデータも含めてさらに掘り下げていこうと考えています。あわせて、学習用の動画を見直すことで、自分自身の理解をより一層深める予定です。

クリティカルシンキング入門

数字の工夫で見つけた新発見の旅

数字活用のコツは? 数字を活用するためには、「加工の仕方」、「分け方の工夫」、「分解の留意点」を意識することが重要です。業務では数値を頻繁に使用しますが、「加工の仕方」には特に問題を感じていません。ただ、「分け方の工夫」に関しては、機械的に分けることが多かったことに気づきました。機械的に分ける場合と、柔軟に分けることで異なるグラフ結果が得られるという点は非常に新鮮でした。 上司へどう伝える? 上司へ説明する際には、数字がハイレベルで理解できることが重要です。そのため、今後は数字の分け方に注目し、客観的でわかりやすい資料作成に努めたいです。「分解の留意点」においては、MECEを活用し、全体をモレなくダブりなく定義し、分析することを心がけます。一度出した回答も再検証し、常に正しいかを確認することで、最短で正しい回答を導き出したいと思います。回答を出すとすぐに実践してしまう癖があるので、注意する必要があります。 プレゼンの工夫は? 「分け方の工夫」は、上司へのプレゼンテーションや報告にすぐに活用できます。具体的には、KPIやプロジェクト進捗において、達成に必要なものやすべきことを数値で分解し、機械的ではなく柔軟にグラフ化することで、視覚的にわかりやすく解決策を見つけやすくします。また、今週学んだ内容は業務全般に活用できるため、有意義でした。忘れないように反復して身につけたいです。 資料作成のポイントは? 現在準備しているKPIやプロジェクト進捗報告のプレゼン資料には、特に「MECE」、「分け方の工夫」、「分解の留意点」を取り入れたいです。重複する部分もありますが、MECEを用いて層別分解、変数分解、プロセス分解を試み、新たな発見をし、異なるグラフを用いることで説得力を高めたいと思います。回答の検証も行い、より効果的なプレゼンテーションにしたいと考えています。

データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

クリティカルシンキング入門

数字が切り拓く成長の鍵

数字の意義は何? 数字にただの数値以上の意味を持たせるための第一歩として、数字を分解して理解する方法を学びました。最初に全体像を捉え、その後に複数の切り口で分解することで、数字の意義や解像度を高めることができるという点がとても印象的でした。 実践で何を感じた? 実際に手を動かして作業を進める中で、たとえ重要な意味が見いだせなかった場合でも、「意味が見いだせなかった」という結果自体が大切な情報となることに気づきました。こうしたプロセスを通じて、思考の過程を明確にすることの意義が強調されていました。 フレームワークはどう? また、MECE(もれなくダブりなく)のフレームワークが、層別分解(足し算の考え方)、変数分解(掛け算の考え方)、フロー分解という3つの視点で数字を整理する際に非常に参考になると感じました。このフレームワークを実践することで、より明確に数字の背後にある意味を読み解くことができました。 業務での成果は? 業務面では、事業目標達成に向けたKPI設計やPDCAサイクルのチェックにおいて、数字の分解が役立っています。日々の進捗確認やボトルネックの特定にこの手法を活用することで、マネージャーとしての視座を高め、部下に新たな気づきを提供する場面が増えました。 顧客の課題は? さらに、顧客のニーズや課題の解像度を上げる際にも、数字や状況を複数の切り口で分解して考えることで、問題の原因や改善策を明確にすることができます。例えば、直近の目標に対してKPIがもれなくダブりなく設定されているかのチェックや、カスタマーサクセスプランの再設計、個人目標の複数の切り口でのアクションプランの検討、そして部下のレビュー時に異なる視点を提供することなど、具体的な取り組みが挙げられます。

戦略思考入門

数値でひもとく戦略のヒント

勉強内容はどう感じ? 今週の実践演習では、非常に勉強になる内容が多くありました。最初に提示された表や設問の説明だけでは、どの顧客に注力すべきかが直感的に判断できませんでした。しかし、数値を活用して分析することで、選択すべき顧客が明確に浮かび上がってくる作業はとても面白かったです。 利益率の意味はどうなる? 今回は時間当たりの利益率にフォーカスしていましたが、分析の軸が変われば結果も大きく異なるため、あらかじめ会社全体の戦略として何を重視するかを決定しておくことが重要であると感じました。 軸指標はどう活かす? また、フォーカスした軸に関する指標を別途算出するという手法は、戦略における取捨選択が主目的ではなかったものの、これまで無意識に行っていたことでもあり、今後の戦略検討に活用できると実感しました。 提案と見積りはどうする? 例えば、新たなプロジェクトの提案や見積もりの段階では、コスト削減と機能向上のトレードオフに直面することが考えられます。その際は、以下のような具体的な行動を実践していきたいと思います。 (1) プロジェクトの要件を整理し、コスト削減と機能向上がトレードオフの関係にあることを明確にする。 (2) 効果の最大化、すなわちコストと機能のバランスを踏まえ、どちらを優先すべきかを判断する。 (3) コスト削減を優先する場合は、必要最低限の機能に絞り込む。 (4) 機能向上を優先する場合は、追加のリソースを確保し、顧客のニーズに応える機能を実装して満足度の向上を図る。 (5) プロジェクト終了後には、選択した内容とその結果を評価し、次回以降のプロジェクトへの課題や参考点を整理する。 以上の経験を踏まえて、今後の業務改善につなげていきたいと思います。

クリティカルシンキング入門

分解と工夫で見える新たな発見

なぜ分解して把握する? 物事を分解して状況の解像度を上げることの重要性を学びました。特にデータ分析の視点から、①加工の仕方、②分け方の工夫、③分解時の留意点という3つのポイントに着目して学習を進めました。 加工手法ってどう? まず、データ加工については、意味合いを分かりやすくするために基準を設け、グラフ化する手法に注目しました。与えられた票をそのまま見るのではなく、自ら欄を追加して全体を俯瞰することで、絶対値や比率などの数値から隠れた傾向を明確にする―いわゆる「可視化」が鍵となります。 どう分けると良い? 次に、データの分け方の工夫では、手元のデータをもとに状況を捉えるため、単に機械的な10刻みで区切るのではなく、試行錯誤を繰り返しながら意味のある切り口を見つけ出すことの大切さを実感しました。場合によっては、元のデータに立ち返って再検証する方法も有効です。 分解の注意点は? また、実際に分解する際は、When(いつ)、Who(誰が)、How(どのように)の観点を持って整理し、自分自身に本当にそうかと問いながら、複数の切り口から検証していく姿勢が求められると理解しました。こうした実践を通じ、たとえ一度で完璧な結果が得られなくとも、傾向が見えてくること自体に大きな価値があると感じます。 分析結果をどう活かす? これらを踏まえ、まずは自分の部門での最近の取り組みを題材に、発生件数や予測される件数、台数などを定量的に観測し、事象の強弱からリスクの高低を分類する(いわばクラスタリングする)というアイデアが浮かびました。加工方法や分類の工夫は、実践経験を重ねる中で深まるものだと考えていますし、他にも有効なアプローチがあれば議論を通じて共有できればと思います.

データ・アナリティクス入門

データ分析の基礎から見直す重要性

比較対象を誤解することの影響は? 分析の基本は比較にあります。特に、比較する対象が「類似性の高いもの同士(Apple to Apple)」であることを意識する必要があります。これまで自身で行ってきたデータ分析において、その認識が誤っていたと感じました。しばしば「異なるもの同士(Apple to Orange)」を比較しようとしていたことに気づいたのです。 データ作成の目的を明確にするには? また、データ作成の際には、まず「目的」を明確にすることが重要であると学びました。ライブ授業で問題に取り組んだ際、大切なポイントを見落としていたことがありました。今後、データ分析を行う際には、まずその分析の目的を再確認し、その上で分析を進めていきたいと思います。 仮説を線で考えることの重要性 さらに、仮説立てに関しても、全体像を広く理解し、点ではなく線で考えることが重要です。これにより、いくつかの仮説をより具体的に報告できるよう努めたいと思います。特に、SEOに関わる数値分析や会員登録までのユーザー動線の見直しに活用できると感じています。 効果的なデータ分析方法とは? データ分析の目的としては、以下の点に注意したいと考えています。 ・さまざまなタイプのデータの特性と、陥りがちな分析の落とし穴に注意する。 ・定量データを用いた分析の重要性を認識し、その活用を図る。 比較と改善のためのディスカッションの重要性 最近は、コンペティターのメディアとの比較や、ユーザー登録導線の参考メディアやランディングページと自社サービスの比較を十分に行えていませんでした。これを改善するため、チームメンバー全員でグループディスカッションを行い、検証結果を導き出す方法を取りたいと思います。

「数値 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right