クリティカルシンキング入門

多角的視点で探る数字の裏話

数字はどう見える? 数字の分析では、単に数値をそのまま解釈するのではなく、多角的に検証することの重要性を実感しました。MECEの観点から数字を整理・分析することで、現状を正確に把握できるだけでなく、結論に至った理由や背景も明確になると学んだからです。 意見共有はどうする? また、さまざまな立場の人と意見交換する際、分析した数字を根拠として現状を共有することは、認識の齟齬を防ぐうえで大切だと感じました。たとえば、次の企画を提案する際、「なぜこの企画を行うべきなのか」を過去の実績や傾向を基に説明すれば、相手に納得感を持ってもらいやすく、スムーズにアクションへとつなげることができると思います。 議論の進め方は? そのため、事前準備として過去の実績数値をMECEの視点で整理し、どのポジションや役割のメンバーであっても理解できるよう、複数の角度からの分析結果を基に議論を進める姿勢を大切にしたいと感じました。

データ・アナリティクス入門

仮説思考が導く学びの未来

分析と仮説のバランスは? データ分析の軸として「分析は比較である」だけでなく、仮説思考についても学びました。仮説を立てる際、バイアスによる思考の偏りが影響する可能性があるため、一度他者の意見を聴くなど、客観的な視点を取り入れてバイアスを抑える工夫が重要だと感じました。 データ収集はどうする? データ収集については、オープンデータの活用も有用ですが、世の中に存在しないデータは自分で集めることが大切だと学びました。確かにこの作業は大変ですが、地道な取り組みが結果として大きな意味を持つと実感しました。 報告資料の工夫は? また、月次報告の資料作成に関しては、現在提示している数値とグラフの表現方法を見直す必要性を感じました。具体的には、数値に関しては棒グラフ、比率については円グラフを使用するなど、視覚的な情報の伝え方を多様化し、リソースの過不足など新たな課題が明らかになるかどうかを検討したいと思います。

クリティカルシンキング入門

データ分析で未来を変える!

学びの意義は? 私の学びについてお伝えします。 数値の発見は何故? 数値データの詳細な分析は重要だと感じました。データの分類手法により異なる結果が得られることを理解しました。また、全体を定義し、仮説を立てることの必要性も痛感しました。具体的には、フレームワークとしてMECEを利用することです。 医療解析の視点は? 医療技術関連に関しては、まず数値化可能なデータを取得し、求めたい結果を明確にしてデータ全体を定義しました。その後、仮説を立て、MECEを活用して分析を進めました。関連性がありそうな分野として、曜日別の忙しさや業務分析にこの手法が使えそうなので試す予定です。 未来の計画はどう? 来週には、自分に関連する業務について計画を立て、その後、今回学んだ手法を活用して曜日別・年齢別の業務分析を行います。その分析結果を振り返り、上司や他の受講生とも共有したいと思っています。

データ・アナリティクス入門

数値に隠れた学びの秘訣

単純平均で十分? まず、単純な平均値の算出だけでは誤解を招く結果になる可能性があると感じました。標準偏差を用いた分析、加重平均の導入、さらには外れ値を除外して計算するなど、数値として意味のある手法を用いる必要があるという考えに至りました。 NPS集計はどう変わる? また、問い合わせ対応後に実施しているNPSの集計についても、状況に応じた評価が重要だと考えます。障害発生時のNPSスコアと、通常の問い合わせ時のスコアが大きく異なるため、障害などの背景情報を考慮に入れて集計した方が適切であると思いました。 状況別スコアの信頼性? さらに、NPSの回答スコアは状況によって変動するため、その状況に関する詳細な情報を併せて提示し、分析の軸として活用することが望ましいと感じています。どのような状況でどの集計方法が最適かを試行錯誤しながら、知識とスキルを磨いていきたいという思いが伝わりました。

データ・アナリティクス入門

4Pの視点で切り開く明日の戦略

なぜ4Pで仮説を立てるの? 4Pの視点から仮説を立てる方法について、これまで十分に実践できていなかったため、改めて基本に立ち返り内容を確認しながら取り組みました。その結果、4Pの視点が非常にやりやすいことを実感し、今後は意識的に活用していきたいと感じました。 なぜ多角的に見るの? また、コンサルティングの現場では、契約状況の因果関係を把握する際に4Pの視点で多角的に分析する必要性を改めて認識しました。リサーチャー時代から苦手としていたこの分野ですが、今後は意識して幅広い視野を持ちながら仮説を構築していきたいと思います。 どうして数値を読むの? さらに、数値データを分析する際は、単に事実を確認するだけでなく、背後にある事象を踏まえて仮説を立て、物事の判断につなげることが重要だと実感しました。3Cや4Pの視点を常に意識し、分析を通じた課題解決の思考力を養っていきたいです。

デザイン思考入門

試しながら感じた生成AIの可能性

業務活用はどう進む? 生成AIを業務に活用する動きが進む中、まずは自分の業務で試してみることが大切だと感じています。たとえば、直近ではOpenAIの新しいモデルに関して、ハルシネーション率が高いとされるため、o4-miniを使ってその数値を表にまとめる取り組みを行いました。 混在は何故起こる? しかし、OpenAIのモデルであるにもかかわらず、GPT-4o-miniとo4-miniが混在した表が作成され、そのままでは利用できない結果となりました。ベンチマークでは高いスコアが出ているものの、正確性の面では改善の余地があると実感しました。 試行の価値は? また、生成AIは手軽に試すことができるため、積極的に利用する価値があると感じています。さらに、AIエージェントやGraph RAGといった技術も提案されており、これらを自分自身で実践することが重要だと改めて認識しました。

データ・アナリティクス入門

数字が語る成功への道

分析と代表値の使い道は? 分析の基本プロセスや代表値の種類について、非常にしっかり理解できています。実際の案件分析やKPIの見直しにおいて、売上、利益、譲渡額、成約期間など、各データのばらつきに応じて単純平均、加重平均、中央値などの代表値を使い分けることができています。また、ばらつきや2SDルールなども活用し、最適な視点からデータを分析している点が印象的です。 説明とKPIの関係は? 現状、データ分析の結果に基づいてKPIが作成・発信されているため、今後はその数値が目標となる理由を、メンバーがより納得できる図表を用いて可視化し、説明できるようにしていきたいと考えています。同時に、分析のプロセスにおいて、目的の明確化、仮説の設定、データ収集、そして仮説(ストーリー)の検証の手順を、メンバーが理解しながら適宜視点とアプローチを選択できるよう指導していく所存です。

アカウンティング入門

数字が紡ぐビジネスの物語

事業と数字の関係はどう? あるカフェの事例を通して、事業コンセプトや大切にしている価値観がPLの各数字にどのように影響するのか、その面白さを知ることができました。単なる数字の羅列ではなく、ビジネスの本質を読み解く上で、各項目が持つ意味に気付かされ、非常に興味深く感じました。また、コスト削減を安易に進めると、ビジネスの根幹であるコンセプトや大切にしたい価値を損ね、最終的には売上減少という結果を招く可能性があるため、慎重な検討が必要だと学びました。 自社との比較はどうなっている? 自社の事例に照らし合わせ、事業コンセプトや大切にしたい価値がPLのどの数字にどれほど影響しているかを改めて確認したいと考えています。そして、その数値が自社の目指す姿にどれほど近づいているかを把握し、もしギャップが見られる場合には、その解消に向けた施策の検討に取り組みたいと思います。

クリティカルシンキング入門

伝わる工夫で魅せる資料づくり

目的を見失わないには? 適切なグラフの見せ方について、目的を見失わず、相手に分かりやすく提示することの重要性を再認識しました。文字の表現では、色使いや強調すべき部分に工夫を凝らし、全体の体裁を整えることが大切です。相手にしっかり伝わるよう、工夫を重ねた資料作成を目指しています。 報告資料はどう伝える? また、各種アンケート結果の報告や費用のトレンド管理、さらには数値以外の報告資料についても、読みやすい資料作成が求められます。部下が作成した資料のチェックの際や、大事な会議・役員へのプレゼンテーション用資料の作成時には、数字を用いた報告の場合、目的やデータの意味をしっかりと理解し、目的に合ったグラフを選択することが不可欠です。グラフのタイトルはもちろん、単位やグラフ内の数値表示にも十分注意を払い、体裁を整えた、読者に伝わりやすい資料作りに努めています。

データ・アナリティクス入門

数字が語る学びの軌跡

なぜ統計手法を重視? 平均値だけでは数値のばらつきを捉えきれないと実感しました。仮説を立てる際、標準偏差や中央値など多様な統計手法を併用することが大切だと改めて感じます。また、データをビジュアル化することで仮説の精度が向上し、分析のアプローチ自体も変わり得る点が印象的でした。 どう評価を改善? 今回のコンテンツ運用アンケートでは、これまで尖った意見や単一の数値に頼った評価に偏っていた部分を改善するヒントを得ました。今後は、仮説を明確に立てた上で、比較や傾向を意識した深いデータ分析を心がけていきたいと思います。 整理で何が見える? さらに、既に収集しているアンケートデータの整理を実施し、情報の過不足を確認する予定です。初めてのデータビジュアル化にも挑戦し、その結果は次回以降の運用改善のための知見として、適切な知識管理ツールで整理していきます。

データ・アナリティクス入門

数値で見抜く!漏れゼロの採用戦略

どの段階で離脱? ファネル分析を通して、どの段階で対象が離脱しているかを可視化できるため、問題点を明確に捉えることができると感じました。ただ単に結果を眺めるのではなく、途中段階で状況を確認し、各プロセスを適切に設定することが重要だと思います。 採用選定のポイントは? また、採用活動においては、採用エージェントや採用プラットフォームの選定に活用できる点が印象的でした。まず、人材会社のユーザー数、直近3カ月以内のアクティブ数、採用職種の登録人数、採用希望年代など、段階的に絞り込むことで、対象となる母数の大きさを把握する手法が有効だと感じました。 母数比較で選定は? さらに、それぞれの採用エージェントやプラットフォームを運営する企業ごとに同様の絞り込みを行い、母数を比較することで、採用活動に最も適した人材会社を選択できると実感しました。

データ・アナリティクス入門

見せ方で広がる学びの世界

数値の見せ方はどう? データの加工によって結果から導かれる解釈が変わる点に非常に興味を持ちました。たとえば、平均や中央値、グラフの種類といった数値の見せ方によって、分析結果の印象が大きく変わることを実感しています。一方で、これらは作成者の意図が反映されている可能性もあるため、単一の数値だけでなく、複数のデータを総合して考察する必要があると学びました。加えて、加重平均、幾何平均、標準偏差など、値の求め方の違いを明確に理解し、使いこなせるようになりたいと感じました。 アラートの傾向はどう? また、これまでに発生したアラートの種類や頻度をまとめ、発生パターンを分析・予測できるのではないかとも考えています。どのタイミングでアラートが発生するかといった傾向を把握することで、対策の立案がしやすくなり、結果としてアラートの抑止につながると期待できます。

「数値 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right