データ・アナリティクス入門

数値分析の極意を学び事業改善へ

分析とは何を指すのか? 目的を明確にしないと、意味のないただの計算・数値になってしまいます。「分析」とは「比較」であり、比較の条件をそろえることが大事です。分析は考察までがセットです。この点を理解することで、意味のある数値やグラフの種類を適切に判断できるようになると思いました。 データをどう活用する? 例えば、WEBサイトやSNSの効果測定では、数値が自動的に出てきますが、それをどう考察するかが重要です。また、アンケート結果の分析では、目的を整理してから項目や回答のさせ方を決めないと、分析できないデータや目的に合わないデータになってしまいます。 明確化の重要性 分析の目的・ゴールを明確化することを最重要視することが肝心です。目の前の数字の増減だけにとらわれず、分析手法やその後の考察までを意識してアンケート設計を行う必要があります。 学んだことをどう実践する? 業務上、数値分析をする機会が度々あるので、今後は学んだことを意識しながら分析手法や報告内容を改善していきたいと思います。

アカウンティング入門

守る価値 育む成長の秘訣

本当に価値を守れてる? 企業が利益を上げるためには、売上を増加させるとともに費用を削減する必要があります。しかし、各施策を検討する際には、自社が大切にしている価値を十分に考慮することが求められます。無闇に費用を削減すれば、大切にしていた価値が失われ、その価値に共感していたお客様が離れてしまい、結果として売上が下がり利益が出なくなる可能性があります。 コアバリュー再認識は? そのため、幹部候補メンバーとの事業計画策定時には、まず自社のコアバリューを再認識してもらい、その上で売上増加と費用削減の施策を検討してもらいます。出てきた各アイデアについては、自社のコアバリューを損なわないかどうかを丁寧に確認していくことが必要です。 数値が示す真実は? また、幹部候補メンバーには、自社のお客様と売上のデータを分析し、お客様が何に価値を感じているのかを考えてもらいます。その「価値」が損なわれない範囲で実施できる費用削減策と、その「価値」をさらに高め、売上増加につながる施策を立案することが求められます。

データ・アナリティクス入門

視覚化で輝く数値のストーリー

平均値の限界は? 平均値は計算が容易で意味も通じやすいことからよく用いられますが、ばらつきの情報が考慮されていないため、正しい情報を得る上では限界があります。代表値だけではデータ全体を俯瞰し、妥当性を確認するのが難しいため、データのビジュアライズ化が重要だと感じます。 なぜ見せる工夫が必要? 受領したデータの全体像を把握するため、代表値の算出に加え、ビジュアライズ化を実施することにしています。普段はExcelを使用し、関数を活用して代表値を手軽に算出しているため、この作業の頻度は高いです。しかし、ビジュアライズ化は目的を踏まえた「見せ方」を検討する過程があるため、どうしても敬遠しがちです。そこで、この工程も積極的に実施するよう努めています。 効率化はどのように? また、代表値の算出を効率化するために、算出用の雛形シートを作成し、使い回せるように準備しておきます。ビジュアライズ化については、データ確認結果を部内で共有する際に、誰にでも説明しやすい資料作成を心がけています。

データ・アナリティクス入門

ロジックで描く理想への一歩

現状と理想の差は? 問題解決には、これまで「正常なあるべき姿」とのギャップを埋める施策が主流とされてきたが、実は「現在の正常な状態」から「ありたい姿」へのギャップを埋めることも、立派な問題解決だという点に気が付きました。 アイデアは何で生まれる? アイデアを生み出す際には、ロジックツリーのようなフレームワークを用いることが重要だと感じました。ただし、そのためには意味のある切り口が不可欠で、切り口となるパターンの数は経験によるところが大きいと考えています。 ロジックはどう活かす? また、現在社内で生じている問題に対して、ロジックツリーを用いて「WHY」と「How」を整理したいと思いました。これまで、あるべき姿と現在の状況を数値で示すことが難しい(もしくは手間がかかる)ため、取り組みが進まず、結果として抽象的な対策案に終始していた印象です。今後は、数値化したデータを基にロジックツリーを活用することで、より具体的で幅広い施策を検討できるのではないかと感じています。

クリティカルシンキング入門

多面的分析で見つけるユーザーの真実

分析の目的はどう設定する? 数字整理の段階で、分析の目的や仮説を設定して作業を進めることの重要性を学びました。この方法により、さまざまな観点から結果を導き出せることがわかりました。また、分析前にMECEやロジックツリーを活用して要素を整理することで、抜け漏れのない分析が可能であることも学習しました。 多様な切り口で何を掘り下げる? この手法は、社内システムに対するユーザー満足度調査の分析に役立つと感じています。以前は、部署毎や勤続年数などの一般的な数値のみでの分析にとどまっていましたが、より多様な切り口で分析を進めることで、真のニーズを掘り下げることができるのではないかと考えています。 ロジックツリーの作成はどうする? まず、ロジックツリーを手書きで作成し、可視化します。そして、それを基にしてExcelのピボットテーブルを活用し、他にどのような切り口があるかを常に自問しながら分析を進めます。あわせて、MECEによるモレやダブりがないかにも注意を払っています。

データ・アナリティクス入門

データ分析で発見する成功のカギ

比較に意味があるのは? 分析は比較であることを理解しました。つまり、比較に意味がない数値を比べることは無意味だと感じました。 失敗例から学ぶ分析法 データ同士の要素を揃えることも重要だと考えます。これまで成功例をいくつか分析して共通の要素を探したことがありますが、振り返ってみると、失敗例でも同じ分析をして失敗しているケースが多々あったのではないかと思います。それは、本当の成功要因とは異なると思います。 成功要因の鍵は何か? 広告などのクリエイティブにおける結果の分析で、特に比較要素が多い動画クリエイティブでは、成功事例と失敗事例を踏まえて、本当にキーとなるポイントを発見することができれば、大きな成果につながると感じます。 具体的目標に向けて行動 3月末までに業務の特定の箇所を学んだデータ分析を用いて数値を改善させる目標を立てました。毎週の授業の中で、具体的に自分の業務をイメージしつつ、会社の中で自分がどう行動するかを考えながら学習に取り組んでいます。

データ・アナリティクス入門

仮説と数字で描く未来

どの要因を重視する? より良い分析を行うためには、単に手法を実施するのではなく、実態だけでなく、事象の背景にある要因に目を向け、仮説の設定に力を入れることが重要です。たとえば、期間、事業部、他社との比較や、売上を数量と単価といった要素に分解して、その関係性を明確にすることが求められます。 どの数値に注目すべき? 現在、次期中期経営計画策定に向け、社内外の事業環境および自社の事業構造の把握に努めています。中期的な戦略を練る上では数値が非常に重要であるため、その分析結果をもとに、部内の若手社員と見立てを共有し、意見交換を進めることを目指しています。 仮説検証、どう進める? また、これまで手薄だった社内データの分析についても、各種検証を重ねた結果、実施可能な体制が整いつつあります。データ分析にあたっては、仮説設定を重視し、エクセルのピボットテーブルや統計ツール、可視化ツールを活用しながら、複数のメンバーで議論を交わし、一定の結論に導くプロセスを進めています。

アカウンティング入門

数字の裏に秘めた学びのヒント

決算報告書をどう捉える? 現在、システバックスの決算報告書を実際に確認する機会がありました。以前はただの数字の羅列に過ぎなかったP/Lですが、コンセプトや事業活動のイメージとリンクさせることで、数値の背景が見えてきたと感じます。システムエンジニアから税理士法人に転職し、少しずつ担当のお客様を持つ中で、今後はお客様へP/LやB/Sを説明する機会が増えていくと予想しています。そのため、今回の学びは非常に有意義で、企業についてさらに調べるなどして内省できる良い機会となりました。 説明方法はどう考える? ご担当のお客様には、数値を根拠にP/Lの結果や今後の動向を自信を持ってご説明しています。また、事業活動をヒアリングした内容を図などに落とし込み、お客様とのイメージを合わせる取り組みも行っています。今回の決算報告書の学びを活かし、先輩社員の説明面談にも同席し、学んだ視点でレポートを読み、フィードバックをいただくことでさらにスキルアップを目指していきたいと考えています。

データ・アナリティクス入門

データ分析で未来を描く方法

目的を明確にする重要性 目的を明確にすることは、分析作業の基本です。これまで私は、過去の経験に基づいたバイアスを持ちながら、取り組みやすい課題解決策から進める方法を取ってきました。しかし、バイアスを取り除き、基本に立ち返ることが重要だと感じます。分析では、比較や言語化が鍵となります。 数値化で課題を明確化 現状とあるべき姿とのギャップを分析し、比較することで、課題のレベルを数値化したいと考えています。業務レベルの改善や変革を推進するにあたっては、数値による判断材料の精度を高め、プロジェクト内での共通理解を促進し、推進の結果を最大限引き出したいです。 合意形成と重点課題の抽出 まずは、プロジェクトメンバーの間で目的を明確にし、合意形成を図ります。そのうえで、データの収集と加工を行い、比較分析により重点課題を抽出します。最後に、その分析結果を基にアクションプランを言語化し、業務レベルでアセスメントを実施して、体制、スケジュール、予算を計画します。

クリティカルシンキング入門

複眼で捉える気づきの瞬間

グラフで何がわかる? 数字の威力とは、単に実数として存在する数値をそのまま見るのではなく、グラフなどの視覚的表現を通じて、数値だけでは読み取れなかった示唆を引き出す点にあります。どこでデータを区切るかでその解釈が大きく変化するため、ひとつの見方に固執せず、複数の切り口から考えることが求められます。 全体像はどう捉える? また、データを複数の角度から実際に分解することで、新たな気づきを得ることができます。分解した結果からすぐに結論を出すのではなく、一度立ち止まり、改めて考察するプロセスが非常に重要です。その際、目的に沿った分析ができるよう、全体で何を捉えるのかを明確にしておく必要があります。 売上推移をどう見る? さらに、売上推移の現状把握や仮説立てにも多角的な視点が活かされると感じました。個人別、チーム別、事業部別といった区分だけでなく、月間、四半期、前年同期比や商材別など、さまざまな分類方法を用いることで、より深い分析が可能になるでしょう。

データ・アナリティクス入門

偏見を超えるデータの力

バイアスはどう捉える? データ分析を学ぶ中で、ただ数値を扱うのではなく、自己のバイアスを取り払い、タスクに合わせてニュートラルな視点に切り替える大切さを実感しました。このような状態で、高い専門性と比較するスキルを活かし、データから具体的な仮説を立証できると理解しています。 セキュリティは大丈夫? 社内で広くデータ分析を利活用するためには、堅牢なセキュリティ基盤とデータ基盤の構築が不可欠だと感じます。編集機能やデータ閲覧機能を適切に制御しながら、データウェアハウスを運用することで、業務に活かすための取組みが一層進むと考えています。 AI応用はどう進む? さらに、データアナリティクスを深く理解するために、4月から9月までの期間を通じて学習を進めるとともに、生成AIを取り入れたデータ分析への応用も視野に入れています。データウェアハウスから得られる結果や知見を、プログラムを通じて読み解くスキルの習得が、今後の発展に大いに寄与すると感じています。

データ・アナリティクス入門

今こそ見直す!全体把握で業務スッキリ

講座全体の流れは? week1からこれまでの内容を総ざらいした結果、実際の業務では一つ一つじっくり考える時間が限られていると実感しました。その中で、改めて講座全体の流れや全体像を把握できた点は今後の業務に大いに役立つと感じています。 整理と対策は? また、FY25 1Qの振り返りと今後の対策を検討する際に今回の作業内容が活かせると考えています。今年度は中期計画における節目の年であり、目標達成が不可欠なため、効率よく物事を整理し、考察していく必要があります。そのため、現時点での状況と課題の整理、そしてどの課題に打ち手を打つと効果が高いかをしっかり見極めることが重要です。 連携と見直しは? チーム内でも同様の検討が進められており、自分なりの仮説も含めて、積極的に意見を発信していこうと思っています。まずは来週までに、問題点の定義や数値の集計、そして課題となりうるポイントを明確にし、その後の対策についても検討していきたいと考えています。
AIコーチング導線バナー

「数値 × 結果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right