データ・アナリティクス入門

データで掴む!プロダクト成長の鍵

定量分析の重要性は? 目的を明確に持つことや分析が本質的に比較であることを改めて理解し、以下の観点で新たな気づきを得ました。まず、定量分析の重要性です。適切な比較を行うためには、目の前の事象やデータだけでなく、「Aがない場合」といった事象の背景も考慮に入れ、比較対象を慎重に選定する必要があります。また、仮説を立てることで分析の精度を上げることができると感じました。 アプリ戦略と仮説の関係 現在、私はアプリのプロダクトマネージャーとして、プロダクト企画や戦略立案を担当しています。また、自社事業でアプリやプロダクトを使って事業成長戦略を描くというミッションを追っています。市場データや競合比較、ユーザーの売上データ等を用いて仮説を立て、精度の高い分析を目指しています。この手法は仮説の精度を向上させるための手段となり得ると思います。 ユーザーのペインとは? 分析が役立つと考えられる場面は以下の通りです。まず、ユーザーのペインがどのような数字に表れているかについてです。特に、弊社のヘルスケアアプリにおいて、ユーザー記録データの推移と一般的な健康データを比較し、特定のセグメントにおけるペインを特定できる可能性があります。また、国内外の市場比較から次世代市場の動きや外資企業の動向予測が可能になるとも考えています。 市場分析に必要なステップ 市場分析においては、目的の言語化が重要です。市場分析は主に「自社プロダクトの市場成長性と方向性決定のため」「自社事業成長戦略のポジショニング決定のため」の二つの観点を想定しています。目的ごとに仮説を立て、分析軸を決めることが必要です。具体的には分析目的をMECEで言語化し、優先順位を付けて最上位から着手します。何をどのように比較するか、仮説が本質的な目的から外れていないかを確認し、ゴールまでの計画を立てます。 データ分析で見える強みと弱み 自社プロダクトの分析には、「あるべき姿」と現状のギャップを言語化し、そのプロセスとしてデータ分析を活用します。市場ポジションの分析では、自社プロダクトの利用状況推移と同セグメントのアプリの一般的な状況を比較し、強みや弱みを特定します。また、ユーザーのペインを見つけるためにデータ分析を行い、アンケート結果やユーザーインタビュー結果を再評価し、インサイトを見出します。

データ・アナリティクス入門

データ活用で未来を切り拓く鍵

目的を明確にする重要性は? 目的を明確にすることと、正しい比較を行うことは非常に重要です。動画の例では、提示された数字をそのまま信じてしまう場面がありましたが、実際のビジネスシーンでも同様の例は多いと感じます。そもそも、その数字は何のために存在するのか?どのような基準で比較しているのか?比較の手法や数字の計算、抽出方法は正しいのか?データの精度や信頼性も重要です。AIの助言を受けて、身近な実例として新聞のチラシやテレビショッピングに出る数字を見て、何を示しているのか粘り強く理解していきたいと思います。例えば、「当社比」とは一体何を指しているのか?私の両親もそのまま鵜呑みにしているようなので、注意したいところです。 戦略経理とは何か? 経理に関しては、記帳や財務諸表作成がAIや外注で可能になると考えています。ただ、仕訳を行い記帳している際に「不思議だ」と思う点があり、そこを深堀りすることで経費や売上を分析し、会社全体が利用できるデータにすることができるのではないかと考えています。「戦略総務」や「戦略人事」という言葉を聞いたことがありますが、「戦略経理」という考え方もあって良いのではないかと感じます。 データ・ドリブン経営をどう進める? 意思決定にはデータの利用が不可欠です。データ・ドリブン経営という言葉が以前からありますが、そもそもデータに基づかない経営が存在するかという疑問が湧きました。実際の現場では感覚や感情に基づく経営が主流でしたが、私が関与する場面ではデータに基づいた意思決定を推進していきたいです。 仕事の目的を再確認する重要性 業務全般において、目的を明確にすることが重要です。これまでの仕事の中で、議事録作成などの業務において何のために行うのかという明確な目的がなかったため、非効率的となっていました。しかし、目的を明確にすることで効率的に正しい結果を得られるようになることを意識したいと思います。 転職活動で心掛けることは? 現在、転職活動中で新しい職場を探している中、今後の行動指針として、意思決定に際しては必ず数字の裏付けを吟味すること、目的の明確化を徹底することを心掛けたいです。また、以前に読んだ本や少しかじった統計検定の内容と重なるところが多いことから、統計学を一度学び直したいと考えています。

データ・アナリティクス入門

数字が語る!原因分析のコツ

原因分析のポイントは? 「why:原因を分析」という問題解決のステップについて学び、実際の業務に活用するためのヒントを得ることができました。原因分析では、問題がなぜ発生したのかデータを基に追及し、原因が特定できた後に解決策を検討するという流れを確認しました。 プロセス分解の極意は? この授業で得た学びは主に2点あります。まずは、データをプロセスに分けて考える方法です。課題では、ウェブサイトの広告表示から体験レッスンへの申込に至る一連のプロセス(広告表示→広告クリック→申込)の各段階のデータを比較し、同じ経路を辿った中でどこで数値が落ちているかを検証しました。比較する際は、各プロセスの分母が異なるため、率で示す点が重要です。率が低いプロセスに問題があると考え、具体的な原因を探る有効な手法だと実感しました。この方法により、どこから改善に取り組めばよいのかが明確になり、必要なデータの選定も容易になると感じました。 原因思考の広がりは? 次に、原因を考える際は思考の幅を広げる必要があると学びました。フレームワークの一つとして、対概念という視点を活用する方法があります。たとえば、「自社の戦略に原因がある」と「自社の戦略以外の要素に問題がある」という二つの視点から原因を考えることで、一方向への固執を避けることができます。この手法は、原因の決め打ちを防止するのに非常に有効だと感じました。 遅延の要因は? 実際の業務で、業務の遅れが他部署に影響を与えている場合、まずはその業務を複数のプロセスに分解し、どの段階でボトルネックが発生しているのか、数字を元に比較することが有効だと考えます。原因追求においては、MECEの考え方も必要不可欠です。さらに、原因に関わる要素が明らかになったら、それ以外の可能性も併せて検討することで、一面的な見方に陥らずに対策を練ることができると実感しました。 学びをどう今後活かす? この学びからは、事象には必ずプロセスが存在し、分解して比較することで原因を特定できること、そしてよい事例についてもプロセスの整理が応用可能であることを改めて確認しました。今後は、問題だけでなく成功事例にもプロセスの視点からアプローチし、より幅広い視野で原因と対策を考えられるよう努めていきたいと思います。

データ・アナリティクス入門

ビジネスフレームワークで仮説を確かめる方法を学ぶ

効果的な仮説の立て方は? 今回は、「Why(原因の分析)」について学びました。このステップでも「What」「Where」同様に、複数の切り口を持ち、複数の仮説を立てることが重要だと実感しました。特に、切り口の感度の良さや仮説の筋の良さが問題解決の精度に大きな影響を及ぼすことを改めて痛感しました。高い視座と広い視野を持ち、ビジネスフレームワークを活用して大局的かつ網羅的に複数の仮説を立てることが有効だと学びました。 具体と抽象の使い分け方は? また、仮説の分類として「問題解決の仮説」と「結論の仮説」があり、前者は具体化、後者は抽象化が肝要です。具体と抽象を使い分けて行き来できるように練習することが必要だと改めて感じました。 データ検証のプロセスの重要性は? そして、仮説は検証して初めて意味を持ちます。データを収集し(既存データに不足があれば新たにデータを集め)、指標を定め、その指標で比較できるように適宜データを加工し、段階的に仮説を絞り込み検証を繰り返すプロセスが重要であると学びました。 ツールを活用するために何が必要か? ツールがあることは助かりますが、使いこなせなければ意味がありません。仮説設定やデータ収集・結果の比較を通して「経験や勘による決め打ちや意図的な絞り込み」という負の側面が出ないように、正しいプロセスを意識し、目的に適したツールを正しく使いこなせるように練習を繰り返したいと考えています。 次期事業計画の策定にどう活かす? 次期中期事業計画の策定時には、このプロセスを活用します。「なぜ今ターゲット顧客から選ばれているのか」を深堀りし、仮説を設定してその再現性と競争優位の持続可能性を検証したいと思います。どのビジネスフレームワークを使って仮説を設定し、どの指標で比較し絞り込むかを考え、一つずつ丁寧に進めていきたいです。 客観性と説得力を保つためには? 『経験や勘で導き出した答えの確からしさを、ビジネスフレームワークを用いて正しいプロセスを踏むことで確認する』という意識を持ちながら、フレームワークの選定や指標の設定、データの収集・比較、仮説の絞り込みなどの過程で、経験や勘による決め打ちや結論ありきの意図的なものにならないよう常に意識し、客観性と説得力を担保するように努力します。

戦略思考入門

次期事業計画策定に向けた差別化戦略の重要性

省エネでゴールに到達するには? 目指すべきゴールを明確にし、可能な限り省エネでそのゴールに到達する方法を見極める方法について学びました。戦略的に行動するためには、現経営資源の独自性(強み、差別化ポイント)を正確に把握し活かすことが肝要です。そして、その差別化ポイントを見極める観点として下記の3点があります。 1. ターゲット顧客に価値を訴求できるもの 2. 経営数値面を含め実現可能なもの 3. 長期にわたり自社の競争優位性を持続可能なもの 本当に差別化できている? 実際に、どのポイントも「できている」「差別化施策だ」と確固たる自信を持って言える状況ではないことに気づきました。例えば、自社が提供するサービスの価値が本当にターゲット顧客が求めているものであるのか(ニーズ/シーズの把握や過剰サービスの可能性も含め)、実際に差別化できているのか、そしてその競争優位性をどれだけ維持できるのかといった問いです。 次期事業計画の策定に向けて 次期中期事業計画の策定時には、「目指すべきゴールを明確にする」「やらなくてよいことをしない」「独自性(強み)を持ち自覚する」そして戦略の構造化を図ることが必要です。学んだ内容を基に、VRIO分析のフレームワークを用いながら周囲の協力を得つつ、関係者と一緒に「高い視座と広い視野」「一貫性と整合性」を意識しながら、差別化施策を立案していきたいと思います。 具体的な差別化施策をどう立案する? 具体的には、以下の5点を意識して差別化施策を立案します。 1. ターゲット顧客は誰か?(ターゲット顧客にしないのは誰か?) 2. 自社はどのような価値をターゲット顧客に提供しているか?(価値を明確に表現できているか?) 3. それは本当にターゲット顧客が求めていることか?(ニーズ/シーズは何か?満たしているか?期待を超えているか?過剰サービスになっていないか?) 4. 本当に差別化できているか?(そう思い込んでいるだけではないか?) 5. 差別化できているとして、その競争優位性はいつまで持続できそうか? 競合とどう比較し学ぶか? また、ターゲット顧客の生の声を確認し、他社の事例から学び比較検討することにも挑戦してみたいと思います。

データ・アナリティクス入門

目的設定から始まる分析の旅

分析前に何を考える? 分析を始める前に、目的や仮説を明確に設定することが基本です。その上で初めて実際の分析に着手できます。データの加工については、AIの活用が効果的ですが、なぜそれを行うのか、また結果がどうであるのかという点については、人の意見が重要だと感じています。これまでの業務では、見やすさやわかりやすさに時間をかけすぎ、本質的な問いに対する回答が十分でなかったと実感しています。 定量データの違いは? 定量データには様々な種類があり、平均値を算出することが有意義な場合とそうでない場合とがあります。直感的には理解できるものの、理由を問われると具体的な説明が難しいこともあります。質的なデータか量的なデータかという違いよりも、それぞれの特徴をしっかりと認識しておくことが大切です。 条件比較、何を見る? データの比較を行う際は、本当に同じ条件で比較できているかどうかを確認する癖を身につける必要があります。なぜ複数のデータを比較するのか、比較から何が読み取れるのかを常に考えることが求められます。例えば、既存店舗における業績、顧客属性、サービス満足度のデータを用いる場合、その店舗の改善ポイントや、他店舗で活用できる内容を明らかにすることが重要です。また、将来予測に際しては、既存店舗のデータ分析が正しく目的を果たし、正確な判断につながることが、1年先の店舗運営における仮説や予測の精度向上、そしてリスクヘッジに直結すると考えています。 会議で何を共有? 会議や立ち話などの中で分析に関する話題が上がった際も、まずは紙一枚に目的、期間、どのようなデータが必要か、既存のデータなのか、どの部分から入手可能かをまとめることが大切です。その上で、依頼者と意見をすり合わせながら進めることが効果的です。 定性データは役立つ? また、定性データの活用についても重要な視点です。仮説設定の根拠や課題確認のため、まずは定性データに目を通す機会を十分に設けることが求められます。 AI活用の注意点は? 現時点では、AIの活用は基本的に注意が必要ですが、関係のない自作データなどを用い、どのようなデータの見せ方が効果的かを試行するなど、活用の視点から取り組んでみると良いと感じています。

アカウンティング入門

B/Sで読み解く企業の健康診断

B/Sってどう読もう? まず、B/S(バランスシート)の基本的な読み解き方について学びました。左側に資産が、右側に負債と純資産が記載され、流動性の高い項目から順に並んでいることから、B/Sは企業のお金の使い道と調達方法、そして健康状態を確認するための重要な表であると理解しました。 収益差をどう捉える? また、ある鉄道事業と、ゲームソフトを主たる事業とする収益体質の比較を通して、固定資産の多さと収益構造の違いを検討しました。一概にどちらが優れているとは言えないものの、純資産が多く借入が少ない側は、事業の機動性が高いと感じました。 カフェ事例で学べる? ケーススタディでは、あるカフェの事例を用いて、B/Sの読み方をより実践的に学びました。そのカフェでは、自己資金に援助金を加えることで純資産を増やし、さらに銀行からの3年の長期借入れを固定負債として計上する手法が紹介されました。加えて、コンセプトに沿った土地や建物、内外装工事、調理器具、インフラ権利なども資産に含める点に気づかされました。 資金調達のリスクは? また、計画通りに資金を調達できなかった場合のリスクについても検討し、資金調達が不十分なことでコンセプトの変更や事業への影響が生じ、最終的には倒産リスクにつながる可能性があることを認識しました。もしコンセプト通りに事業が進められないのであれば、事業計画の再立案が必要になり、その結果、事業開始が遅れるリスクもあるという理解が深まりました。 投資と原価、何を感じ? さらに、投資や固定資産管理、原価の償却費の影響は日常業務で頻繁に関わるため、学んだことを活かして自分なりに投資が事業に与える影響を仮説立てしながら実務に落とし込みたいと考えています。一方で、資金調達については機会が少ないため、B/Sを確認する際に純資産や長期借入金に注目し、仮説を構築する習慣を身につけたいと思います。 前回と今回はどう結ぶ? 最後に、前回のP/L学習と今回のB/S学習を通して、自社や日々の業務における具体的な課題が見つかっているかどうかをメンバーに問いかけ、成功事例や具体的な取り組みについて意見交換を進めていくことも大切だと感じています。

マーケティング入門

受講生の声に未来のヒント

自社魅力をどう分析? 既存のリソースを活用して新しいビジネス展開に取り組む力が求められます。その際、まずは顧客視点から自社の魅力を分析し、ライバル企業を狭い業種ではなく、広い服飾業界全体として捉えることが大切です。 製品方針は決まった? また、時代の変化に対応した製品開発と、要件定義を明確にした上での開発方針の策定が不可欠です。これにより、より実用的な解決策が生まれる環境が整います。 潜在ニーズを発見? さらに、顧客自身が気づいていないニーズを掘り下げる手法として、行動観察や個人インタビューを実施することが有効です。潜在的なニーズを把握することで、本当に必要とされるサービスや製品の開発が可能になります。 製品名はどう選ぶ? 製品名については、親しみやすく覚えやすい上、製品との整合性がありユニークな語感を持つ名前が望ましいと考えます。名称がユーザーに与える印象も、製品の魅力を左右する重要な要素です。 顧客課題は明確? ペインポイント、つまりお金をかけてでも解決したい課題を見つけ出すことも重要です。単に「あればいいな」というニーズではなく、実際に顧客が投資を惜しまない課題に焦点をあて、機械に限らず工場全体の課題として捉え、顧客への訪問インタビューを通じて具体的な問題点を明らかにする必要があります。 数値で説得できる? 実際、課題の中には費用をかけて解決したいものと、そうでないものが混在しています。例えば、工場向けの大型機械の場合、金銭や時間、人手という具体的な数値で示される課題は、比較的解決に向けた投資が行いやすいですが、中小企業の場合、得られる利益を正確に算出するのが難しいこともあります。そのため、例えば古い機械を更新する際に新製品の処理速度が2倍になるという具体例を用い、1時間あたりの利益や4年間での費用回収シミュレーションを示すなど、数値で分かりやすく説明する工夫が求められます。 担当部門を再考? 最後に、製品名の決定については、どの部門が担当するかも再考の余地があります。従来は機械開発担当が決めるケースが多いですが、ユーザーと近い部門が名称選定に関わることで、よりユーザーに響く名前が付けられるのではないかと感じています。

データ・アナリティクス入門

細かい分析が未来を創る

原因をどう捉える? 問題の原因は、全体のプロセスを細分化して考えることで把握しやすくなります。原因を明確にするためには、各工程ごとに何が起こっているかを順を追って分析することが有効です。 解決策は何だろう? 一方、解決策を検討する際は、ひとつの案に固執せず、複数の選択肢を用意して比較することが大切です。判断基準を設定しておくことで、より説得力のある解決策にブラッシュアップすることが可能になります。また、本質的な施策を比較検討する際には、A/Bテストが有効です。比較したい要素を明確にし、他の条件をできるだけ揃えることで、テスト結果を効果的に実施策へ反映させることができます。 数値分析はどう見る? 事前の動画では、WEBマーケティングの分析においてアクセス数(ページビュー、ユニークユーザー、流入数)、サイト内行動(ページの回遊数、平均滞在時間、直帰率、再訪問率)、広告効果(クリック率、CPA)、および効果測定(コンバージョン)といった数値の重要性が紹介されました。現代のマーケティング環境では、顧客の購買体験がSNSの影響で複雑化しているため、マーケティングミックス(4P)の視点も必要不可欠です。 仮説はどう組み立てる? また、仮説の立て方については、まず知識を広げることで情報を耕し、そこからラフな仮説を作成するという大きな2ステップが重要だとされています。さらに、5Aカスタマージャーニーのフレームワークを活用することで、サービスとの出会いからファンづくりまでの流れを効果的に生み出すことが可能になります。 テストの効果は? 商品の活用状況が悪い場合や解約が増加しているときの対策としては、ポップアップでの案内や電話窓口の資料の強化といったパターンに頼りがちです。しかし、日常的にアプローチ(訴求面)のテストを実施しておくことで、急な数値低下に直面した際にも、事前のテスト結果を活かして迅速かつ効果的な対応が可能になります。現在、A/Bテストを実施している場面もありますが、担当者の発案に頼るのみで、年間で数回程度に留まっています。今後は、各施策の企画段階からテストの仕込みを意識することで、より計画的な改善が期待できるでしょう。

マーケティング入門

学びがひらく未来への扉

セグメントは何がポイント? まず、セグメンテーションの切り口として、人口動態変数、地理的変数、心理的変数、行動変数の4つがあることを学びました。購買行動に差が出る切り口を意識することが重要であり、当社の観光コンテンツ配信事業では、アニメファンという趣味嗜好や行動特性を重視すべきだと考えています。 火付け役の意義は? 次に、1stユーザー(火付け役)の選定と普及要因の重要性について学びました。サービス設計においては、比較優位、適合性、わかりやすさ、試用可能性、可視性の5つの普及要因を押さえる必要があります。特に、AIDMAの各段階に合わせ、まずは注意を引くための可視性、次に分かりやすさで興味を喚起し、比較優位で魅力を訴求、適合性により導入意欲を高め、試用可能性を低いハードルで実現することを意識した設計に取り組みたいと考えています。 評価基準はどう違う? さらに、ターゲティングの評価基準として、Realistic Scale(市場規模)、Rate of Growth(市場成長率)、Rival(競合優位性)、Rank(優先順位)、Reach(到達可能性)、Response(顧客反応)の6Rについて学びました。各セグメントについて、代表ペルソナの課題に基づく市場規模や成長率、自社アセットとの親和性、チャネルを活用した到達可能性、そして顧客反応を具体的に評価することが必要です。 事業企画の狙いは? 今回の事業企画は、既存のコミックプラットフォームを活用した観光コンテンツ配信として、アニメファンに推し旅や推し消費の提案を行うものです。現時点で顧客課題の把握、ペルソナの定義、解決方向性の設定、課題の確からしさに関するインタビューが済んでおり、今後は以下のスケジュールで具体的な検証を進めます。 検証スケジュールは? 2月下旬の週には、セグメントごとの市場規模とコストの調査を行い、3月上旬にはその結果をもとに市場規模の判定とコスト試算を実施します。続く週には、優先すべき事業アイデア3つについて、解決策の適合性をインタビューを通じて確認し、3月中旬にこれらの成果をまとめ、未達事項を整理します。そして、3月末の審査会に向けた最終調整を進める予定です。

データ・アナリティクス入門

データ分析の目的を意識して成果を出そう

データ分析の目的は? 「①データ分析の目的を意識すること」と「②正しく比較するために条件を揃えること」の2つが特に印象に残りました。これまでの仕事では、目の前にあるデータを漠然と加工し、何か分かることがないかと試行錯誤しているだけだったと改めて感じました。 明確な分析の必要性を感じる 今後は「何のためにデータ分析するのか」「何が分かると嬉しいのか」を明確にした上で分析に取り組むつもりです。また、自分の悪い癖として「結論ありき」のデータ収集や分析を行う傾向があると自覚しました。具体例では、「●●●という結論を導くために都合の良いデータを探してくる」という方法を取っていましたが、それだと誤った意思決定に繋がる可能性があります。常に正しい条件でデータを比較することの重要性を強く感じました。 賃金制度の課題とは? ①新しい賃金制度の検討に活かしたい。自社の賃金制度に関する課題を明確にするためには、競合や労働市場との比較だけではなく、「現状の給与分布が自社の賃金制度の考え方に沿ったものか」、「自社の人事ポリシーに沿ったあるべき給与分布はどうあるべきかと現状との差異」を正確に比較したいです。 目的達成のためのツール選び ②新しいビジネスツールを導入する際の分析に活用したい。労働安全衛生関係の教育ツール導入を検討しているため、目的を明確にし、「目的を達成できるツール」を選定するための比較を実施していきます。 具体的に言うと、自社の賃金制度の課題を明確にするためには、競合他社や労働市場との年齢や等級ごとの給与比較は当然ですが、それ以外にも比較対象とする要素があるはずなので、漏れないように洗い出します。競合等と比較する際には条件をしっかり揃えることが大切です。また、ツール導入については「何のために導入するのか」「その目的を達成するために必要な要素は何か」「それぞれの要素の基準は何か」をしっかり考えて最適なツールを選びます。 継続的な評価が必要? ツール導入後の経時変化も確認し、継続使用を検討します。いずれの取り組みも、目的や比較対象がズレていないか、要素に漏れがないかを上司やチームのメンバーとよく議論しながら進めていきたいと考えています。

データ・アナリティクス入門

プロセス分解で新発見!

プロセス分解で問題確認? 今回学んだ内容は、まず問題の原因を明らかにするために「プロセスに分解する」アプローチが有効であるという点です。複雑な現象を一連のステップに分けることで、どの段階で問題が発生しているのかを明確に把握することができます。 複数案提示で評価は? また、解決策の検討では、最初から一つの案に絞るのではなく、複数の選択肢を洗い出し、それぞれの根拠を整理して比較することが重要だと学びました。感覚ではなく客観的な理由に基づいて評価することで、納得性の高い意思決定が可能になります。 分析の4ステップとは? さらに、問題解決のフレームワークとして「What(何が問題か)」「Where(どこで起きているか)」「Why(なぜ起きているか)」「How(どう解決するか)」の4ステップを学習しました。この順序で考えることで、思考が整理され、問題に対して論理的にアプローチしやすくなります。 A/Bテストで検証は? また、A/Bテストの手法にも触れ、数値データに基づいて施策の効果を比較することで、主観に左右されない客観的な判断ができることも学びました。 業務改善はどこから? 実際の業務では、日々発生するトラブルや非効率なフローを「なんとなく不便」と感じるだけではなく、プロセスに分解して整理することで、どの部分に改善の余地があるのかを論理的に捉えることが可能になります。また、解決策を検討する際には、複数案を提示し、それぞれのメリット・デメリットを整理することで、チーム内での説得力や意思決定の自信にもつながります。 課題整理の習慣は? 今後は、まず業務上の課題をプロセスに分解して整理する習慣を身につけ、解決策を考えるときには最低でも2〜3案を提示し、それぞれの根拠を明確にすることを心がけます。また、「What → Where → Why → How」という順序を意識し、問題解決の思考を言語化することで、業務改善の効果測定もしっかりと行いたいと考えています。 提案力向上はどうする? こうした取り組みを通して、業務遂行力だけでなく、周囲とのコミュニケーションや提案力も向上させていきたいと思います。

「比較 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right