マーケティング入門

イノベーション視点で製品価値を再考

イノベーション普及の要件とは? イノベーションの普及における要件をマーケティングの視点から初めて学び、その重要性を強く感じました。これらの要件である比較優位、適合性、分かりやすさ、試用可能性、そして可視性の5つの視点をフレームワークとして、自社の製品やサービスを再評価する必要があると考えています。 課題と不安をどう乗り越える? 特にIT企業においては、製品やサービスの説明が機能解説に偏りがちで、顧客視点からの利用価値や利用方法を効果的に提案できていないケースが多く、我が社も同様の課題を抱えているのではないかと危惧しています。 外部視点を取り入れるには? 今回の実践演習では最大4問と想定されていた課題が6問も出題され、回答が不十分であったのかもしれないと少し不安を感じました。それでも、IT企業の事例を基に、製品やサービスの説明が顧客視点での価値提案に欠けているという認識を改め、お客様向けのプレゼン資料や製品紹介資料を見直すことにしました。 社内部門へのアプローチ法は? さらに、経営企画を担当する立場として、親会社や社員、外部パートナー会社を顧客と捉え、彼らのニーズや依頼の真意を常に考える習慣が重要だと感じています。この視点を持つことで、提案内容や改善策にニーズを反映できる機会を増やせるのではないでしょうか。バックオフィス業務はどうしても視野が狭くなりがちなので、顧客視点を一層意識して業務に取り組んでいくつもりです。 商品魅力を営業視点でどう伝える? また、商品やサービスの紹介資料は営業担当と共に相談しながら、検討する機会を設定していきます。私自身、営業の経験があるため営業的な視点は持っているつもりですが、今回の講習で学んだ「商品の魅力を伝える」視点はまだ十分でなかったことを反省しています。営業担当にも理解を得られるよう努めていきたいと考えています。 社員を顧客とする意識をどう高める? 最後に、社員を顧客として捉える意識は持っていたつもりでしたが、その取り組みがまだ不十分だったことを今回の内省を通じて認識しました。今後はこの意識をさらに高め、業務に活かしていきたいと思います。

マーケティング入門

顧客目線でマーケティング戦略を見直す方法

顧客目線をどう捉えるか? マーケティングの基礎として、顧客目線で考えることが前提です。その上で、イノベーションの普及条件(5つの条件)と照らし合わせることにより、市場の立ち位置や比較がより明確になります。 行動変数で顧客を理解? 顧客のセグメンテーションを検討する際には、デモグラフィックだけでなく、趣味や思考、価値観などの行動変数も考慮すると、顧客像を多角的に把握できます。これにより、市場のトレンドを捉えることが可能となります。 さらに、成長性を評価する6Rなどのスクリーニングを行うと、ターゲティングが現実的になり、場合によってはターゲティングの変更も視野に入れることができます。 ネーミングで価値をどう伝える? ネーミングをする際も、顧客が抱く「負のイメージ」を想定し、それを解消することが重要です。これにより、顧客が求める価値を理解し、自社製品の価値を効果的に伝えることができます。 ただし、競合と比較して製品開発やプロモーションに集中しすぎると、「差別化の罠」に陥ることがあります。本来提供すべき価値を見失い、競合との差別点ばかりに焦点を当てる危険性があります。マーケッターとしては、この点にも注意が必要です。 結果として学んだことは、顧客が常に起点であることを理解し、様々な関係性をフレームとして当てはめることです。 SNS戦略で何を重視する? 自社のECサイトやSNSでの戦略構築においても同様で、顧客目線の整理、行動変数による理解、そして6Rを鑑みた顧客理解が必要です。主観に頼らず、顧客が何を求めているのかを理解し、コミュニケーションを図る戦略立案が求められます。主観でSNSの発信内容を決定するのではなく、顧客との接点を心理的変数で設定することを実行したいと思います。 コーポレートSNSでは次のステップが必要です: 1. フォロワーのサイコグラフィック変数を導き出す。 2. 顧客理解を基に、6Rスクリーンニングの仮説でターゲット理解と機会を洗い出す。 3. 競合とのポジショニングを考慮し、実行すべき戦術を決定する。 4. その測定を繰り返すフレームワークの作成を実践する。

アカウンティング入門

テーマパーク企業で学ぶ!会計の新常識

ライブ授業の意義は? ライブ授業で、ある大手テーマパーク企業のB/Sを事例として読み解くワークに取り組みました。まず、その企業の売上の構成要素や提供する価値を明確にした上で、次のステップとして売上原価の項目について検討する手法は、前提条件をしっかり確認する重要性を実感させました。 人件費の扱いはどう? 具体的には、通常「人件費」は販管費に含まれるという認識が一般的ですが、実際には、人の働きが直接売上につながる場合には売上原価として計上される可能性がある点が印象に残りました。このように、B/SやP/Lの項目はある程度のルールがあるものの、企業ごとにその取り扱いが異なることがあり、また、会計基準の影響を受けにくいC/Fの存在意義も改めて感じました。 他業種比較は有効? 全体を通して、今回のワークで会計項目の多様性と、売上原価に関する考察が非常に的確であると実感しました。さらに専門知識を深めるためには、他の業種との比較にも取り組むと、理解が一層進むと考えています。 他業界の実例は? また、以下の点についても考えてみるとよいでしょう。 ・他の業界では、売上原価がどのように計上されるか、具体例を挙げて考える。 ・C/Fが会計基準の影響を受けないことで、特定のビジネス活動にどのようなメリットがあるのかを考察する。 なぜ財務三表を見直す? 今回の学びを踏まえ、再度他企業のP/L、B/S、C/Fを見直してみたいと思います。企業の考え方がそれぞれの財務三表にどのように表れているのかに思いを馳せながら読むことが、理解を深めるためには大切だと感じました。 環境変化をどう見る? さらに、過去の財務三表と現在のものを比較し、社会情勢や企業を取り巻く環境の変化まで考察できれば、より一層成長できると考えています。その際には、たとえばコロナ前後や法改正前後など、さまざまな出来事に注目し、根拠をもって比較基準を定めながら読み解くことが重要です。また、異業種や同業種のB/S、C/Fを、背景にある意図まで考えながら数値の裏に隠れた理由を明確にしていくことにもチャレンジしていきたいと思います。

データ・アナリティクス入門

多角的仮説から導く成功の鍵

なぜ仮説を複数持つ? まず、常に複数の仮説を立て、一つに決め打ちせず、各仮説が原因を多角的に網羅できるように意識することが重要です。どこに原因があるのか、何が原因なのかという点について、切り口を変えて考える必要があります。 比較指標はどう決める? 次に、仮説を検証する際は、何を比較の指標にするかを明確に決めた上で、どこに注目し、何と何を比較するのかという意図を持つことが大切です。 データ収集の方法は? また、データ収集においては、対象者(誰に聞くか)と方法(どのように聞くか)をしっかり考え、たとえ反論になり得る情報も排除されずに集めるよう努める必要があります。これにより、比較のためのデータが十分に得られ、偏りのない分析が可能となります。 仮説の使い分けは? さらに、結論を導くための仮説と問題解決を目指す仮説を明確に区別しながら取り扱うことが求められます。普段は特許情報やその他の情報を用いていますが、さまざまな立場(営業、技術、知財など)から情報を収集する際には、ネガティブなデータが除外されていないかを意識することが重要です。 議論で論点はずれる? 実際に、立場の異なる関係者による議論の場では、「課題」の共通認識が不十分なために、結論の仮説と問題解決の仮説が混同され、論点がずれてしまい、適切な結論に至らないケースが見受けられました。特に、人からの情報は各立場の主観が影響して、情報の取捨選択が無意識に行われることが多いため注意が必要です。 課題はどう分析する? このような背景から、「課題」が何で、どの仮説に基づいて何を分析するのか、また、仮説、比較の指標、意図がぶれないようにしっかりと管理する必要があります。仮説を早期に決め付けたり、先入観に頼ってとりあえずデータを分析したりする危険性があるので、まず観点を整理し、複数の仮説を立てた上で深堀し、必要なデータを洗い出して収集することが求められます。 決め付けはなぜ危険? さらに、結論を導く仮説にするのか、問題解決の仮説にするのかを明確にした上で、上記のプロセスに従い取り組むことが大切です。

データ・アナリティクス入門

現場の知恵で磨く課題設定術

課題設定はどう考える? 今週は、データ分析の一連の流れ(問題提起、仮説設定、検証方法の決定)の総復習を行いました。特に、どんな課題を設定すべきかという初期段階での苦労から、課題設定の難しさを実感しました。適切な課題設定がなされなければ、仮説や検証の方向性も定まらず、最終的な分析の質に大きく影響することを再認識しました。また、課題設定の精度を向上させるためには、現場の声をヒアリングする、過去のデータからヒントを得る、フレームワークを活用するなどの工夫が必要だと感じました。 実務復習は何が目的? 今回の復習を通して、実務でデータ分析の流れを実践し、ブラッシュアップしていく重要性も改めて感じました。特に、業務改善や営業データの分析においては、適切な課題の切り口が成果に直結します。例えば、営業成績が伸び悩む店舗に対して「なぜ成果が出ていないのか?」と問いかける際には、「訪問件数が少ないのか」、「折衝時間が短いのか」、「既存顧客へのアプローチが不足しているのか」といった具体的な観点から検討する必要があります。適切な課題が設定されなければ、的外れな仮説から誤った改善策を提案するリスクもあるため、今後は現場の意見をしっかりとヒアリングし、過去のデータを積極的に活用する習慣をつけたいと考えています。 仮説検証はどうなす? さらに、仮説を立てた後は、実践を通じてどのようなデータが有効なのかを検証することで、より精度の高い分析フローを確立することが求められます。これによって、業務改善や営業データの可視化に対して、より効果的なアプローチが可能になると実感しました。 現場実態はどう見る? 現場の実態を正確に把握するためには、まず営業担当者の意見を聞き、「営業活動でどのような課題を感じているか」を確認することが重要です。データだけでは見えにくい実際の状況を把握するため、過去の営業データ(営業成績の推移、訪問件数、成約率など)を分析し、他店舗との比較からどの指標に差があるのかを特定します。また、フレームワークを活用して「なぜ?」を繰り返し問いかけ、根本的な課題を探ることも効果的です。

データ・アナリティクス入門

仮説で拓く!多角的学びの道

分解で何が見える? 今週の学習でまず印象に残ったのは、問題の原因を明らかにするためにプロセスを分解する考え方です。以前学んだロジックツリーと同様のアプローチで、複雑な問題も整理しやすくなる点が非常に参考になりました。 A/Bテストの本質は? また、初めてA/Bテストについて学びました。Webサイトやアプリの改善において、2つのパターンを比較してどちらが効果的か検証するこの手法は、データに基づいた改善策を決定する上で非常に有用だと感じました。 対概念で広がる視野は? さらに、対概念という考え方も学びました。対象となる事象の反対の観点を同時に考えることで、物事を多角的に捉え、より本質的な理解につながるという点が印象的でした。 患者動向をどう分析? 診療科別の患者受診動向データ分析に関する学習内容も非常に有益でした。分析の視点に差異が生じた場合に、仮説に基づいて問題解決のプロセスをWhat(問題の明確化)→Where(問題箇所の特定)→Why(原因の分析)→How(解決策の立案)のステップで進めることで、より精度の高い分析が可能になると理解しました。これまではいきなり解決策を検討することが多かったため、本質に迫った対策を導き出す点で大きな学びとなりました。 仮説と実試行は? また、現時点ではA/Bテストの具体的な活用場面はイメージしづらいものの、仮説を試しながら問題解決につなげる考え方が日々の業務にも応用できると感じています。 比較で見える分析法は? 分析の基本的な進め方については、「分析は比較である」という考え方のもと、①目的・問いの明確化、②問いに対する仮説の設定、③必要データの収集、④分析による仮説の検証というサイクルを回すことが重要だと学びました。インパクト、ギャップ、トレンド、ばらつき、パターンなどの視点にも着目し、グラフや数値、数式を用いて視覚的に分かりやすく情報を提示することが求められます。仮説思考やフレームワークを活用して多角的に検討することで、データから有益な情報を引き出し、効果的な行動につなげることができると実感しました。

マーケティング入門

ポジショニングで見つける学び

既存商品の強みは? 教材で紹介されたある企業の事例を通して、既存商品の強みを活かしながら新規顧客獲得を図る手法を学びました。具体的には、自社商品の特徴の中から2つの軸を設定し、その軸に基づいてポジショニングマップを作成することで、競合との差別化ポイントを明確にできる点が効果的であると感じました。また、「S(セグメンテーション)、T(ターゲティング)、P(ポジショニング)分析」のうち、SとTは受講前から理解しており、従来の業務でも活用してきたため、本講義でPの重要性を再認識できたことは大きな収穫です。 ペルソナの再評価は? これまでは、狙いたい層から逆算してペルソナを構築し、市場のセグメンテーション、ターゲティング、さらに広報施策へと展開する流れで進めていました。しかし、定期的なポジショニング分析を取り入れることで、ペルソナを再評価し、複数のペルソナやポジショニングマップを保有できることが分かりました。それぞれのターゲットに応じた訴求ポイントを明確にすることで、同一商品から多様な顧客の獲得につながる可能性があると考えています。 学生募集の戦略は? また、学生募集の広報活動における一例では、近年新設された学部を含む、さまざまな学部での募集戦略が検討されています。従来は、情報系志望者や理系学生をターゲットとし、WEB広告やDM施策を中心に実施していました。しかし、競合と比較した場合、自学における「少人数指導」や「統計学・経営系科目の充実」といった強みを活かすことで、理系や情報系に興味はあるものの理数科目に苦手意識を持つ文系学生にも響く広報が可能になると考えています。 競合校調査はどう? まずは、ポジショニングマップを作成するために丁寧な競合校調査を行い、その仮定を裏付けるデータを確認することが重要です。これが実現すれば、ターゲット別の媒体制作の提案がよりスムーズに進むと考えます。また、情報学部だけでなく、経営、国際、看護など他の学部においても同様に競合校調査を実施することで、自学全体のターゲット層をより広げていくことができると期待しています。

データ・アナリティクス入門

データ分析で広告効果を最大化する方法

サーチとコンバージョン分析のポイントは? 私は、定量データの処理方法や割合と実数値の使い分けについて学びました。広告のサーチ数やコンバージョン率を分析する際、実数値で成果を示すと共に、全体の成果に対する割合を表示することで、広告の効果がより明確になります。例えば、特定の広告が他の広告よりも高いコンバージョン率を示す場合、その差を強調するために割合を用いることが有効です。 リーチとフリクエンシーの効果的な可視化 データの加工方法や適切なグラフの選び方について学びました。リーチ(到達)とフリクエンシー(接触頻度)のデータをヒストグラムや折れ線グラフで視覚化することで、どの広告が最も効果的なリーチを達成しているか、または頻繁に接触されたが効果が薄い場合の改善点を容易に発見できます。 データクリーンルームを活用するには? 比較の重要性や仮説に基づく分析について学びました。データクリーンルームを活用する際、テレビとデジタル広告の重複接触を比較することで、効果的な広告の配置や接触頻度を見極める仮説を立て、そのデータを基に改善策を提示します。こうした定量的なデータとその適切な比較により、精度の高い分析が可能になります。 これらの学びを基に、分析プロセスの一貫性を保ちながらデータをより効率的に扱い、効果的な広告戦略を提案できるようになりました。 グラフを使ったデータの伝え方 グラフや可視化ツールを駆使することも重要です。データをグラフやチャートで可視化し、関係者にとって理解しやすい形で伝えます。特に、データの割合や実数値を比較する際には、視覚的に分かりやすいグラフを使用することで、複雑なデータを簡単に理解しやすくし、意思決定をサポートします。 どのように分析スキルを向上させるか? さらに、データ分析スキルの継続的な向上を目指します。新しいデータ分析手法やツールを学び、分析スキルを継続的に向上させます。広告業界で使用される分析ツールやシステムに精通することで、より効率的で精度の高い分析が可能となり、業務の成果を高めることができます。

リーダーシップ・キャリアビジョン入門

振り返りから見える成長への道

理論の変化はどう捉える? モチベーション理論は元々知識として持っていたものの、古い理論であるためか、解説によって解釈に多少のばらつきがある点に気付きました。理論自体は維持されているものの、時代に合わせた解釈への変化が印象的でした。 実践で迷う理由は? また、理論として理解していたものでも、実際に演習に取り組む際には考え込んでしまう場面があり、実践的に使いこなす必要性を強く感じました。 任せ方の境界は? 仕事の任せ方に関しては、以前経験した「やり方を握ったのにあれこれ口を出す」といったやり方が良くない例として挙げられており、想定内の状況であればそのまま任せるという判断と、必要な場合に意見を述べる線引きを意識することが大切だと改めて認識しました。 フィードバックはどう? また、提示された「モチベーションは主観である。だからこそ、寄り添うことが重要」という考えに共感し、フィードバック時にはメンバーに他の可能性を考える機会を十分に提供するよう努めたいと感じました。これまで自分から代案や最適解を提示してしまった点を反省し、今後はメンバー自身が考える場面を設けることを意識します。 直感と理論はどう比較? さらに、モチベーションに関しては、理論を頭に浮かべながら現状の分析や対策を練り、直感的な対応との違いを確認することで、より適切なアプローチを模索していきたいと思います。何よりも、過干渉にならずにメンバーの考えに耳を傾け、共感する姿勢を大切にする必要があると感じました。 毎日振り返る意味は? 日々の活動の中で、実践すべき行動が不足していると感じる瞬間があるため、毎朝この振り返りを確認し、昨日の行動と今日の目標を意識するよう心がけます。メンバーの数が限られているため、特別な実践の場を設けることなく、日常の中で継続的に取り組む考えです。 他リーダーの学びは? 最後に、他のリーダーの行動を観察し、感心する点があればその理由や自分でも実践可能な内容かを整理していくよう努め、より良いリーダーシップの実践を目指していきたいと思います。

データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

データ・アナリティクス入門

ひも解く!受講生の生の声

仮説検証はどうすべき? 問題を特定した後、解決プロセスでは、網羅的な仮説を立てた上で条件をそろえ、比較検証を行う必要があります。同時に、データを収集しながら根拠を明確にする手法も有効です。 上司の指摘は何を示す? また、講義中に説明された内容ではありませんが、課題を進めていく中で思い出した上司の指摘が印象に残っています。上司は、データから状況を読み解く際、さまざまな項目を網羅することは大切ですが、事実と推測を明確に区別すべきだと述べていました。実際、読み取った情報が事実であれば仮説の妥当性を確認できますが、もし推測であれば話が大きく変わるため、この点には十分に注意が必要です。 根拠データはどう確保? 社員の要望をアンケート結果から読み解く場合は、ひとつひとつの事象に対して根拠となるデータを具体的に示すことが求められます。たとえば、「この部分からこういうことが読み取れる」といった説明が必要です。 低正答率の真因は? また、教育受講者に実施する理解度チェック問題で正答率が低かった場合には、単に「理解不足だから」と結論付けるのではなく、問題解決プロセスを分解して検討することが重要です。具体的には、社内教育における教材とチェック問題の内容の齟齬、チェック問題自体の意図が上手く伝わらなかった可能性、あるいは回答者側の問題(例:注意不足)など、課題が生じたプロセスを一つひとつ切り分けて検証する必要があります。 ヒヤリハットの要因は? さらに、6月からは昨年度まとめたヒヤリハットに関するデータの分析が開始されます。ここでは、会計処理中に「冷やっとした」や「ハッとした」といったミスにつながりかねない状況を取りまとめています。データ項目の数や回答レベルが一定でないため仮説を立てるのは難しいですが、ロジックツリーを活用して全体を網羅的に整理し、what(何が)、where(どこで)、why(なぜ)、how(どのように)という観点から現状を整理し、考えの根拠を丁寧に示しながら、最終的にはhowの提案に結びつけていく方針です。

データ・アナリティクス入門

仮説検証で見つける成長のヒント

どう仮説を練る? 前職で教えられた問題解決の手法は、実践する機会が十分にありませんでした。仮説を立てる際、まずは現状把握が最も重要であることを再認識しています。一つの仮説に直感的にたどり着くことはありますが、そこに固執せず、ほかの可能性も考慮した複数の仮説を検討することが、根拠のある仮説を生み出すポイントだと感じています。 検証の切り口は? 動画の一例で「仮説と検証を繰り返す」という考え方が大変印象に残りました。これまでにも同様の手法を試みたことはありましたが、せいぜい数回で終わってしまい、検証の繰り返しが十分ではありませんでした。そこで、自分自身の検証と例で示された検証方法との違い、たとえばアプローチの切り口などについて、改めて考えてみることにしました。 枠組みの意外性は? フレームワークに基づいて検証する方法も、抜け漏れのない仮説を構築できる可能性を秘めています。フレームワークを利用することで、新たな発想や類推が生まれることが期待できる一方、自由な発想では偏りが生じやすく、適切な仮説検証が難しいと感じています。 時間がかかる理由は? また、他の社員と比べて明らかに時間を要している業務があります。正直なところ、その業務が自分に合っていない、あるいは心理的に好ましくないという言い訳をしてしまっていました。しかし、他者との比較を通じて何が原因なのかを見極め、行動に入る前の準備段階に問題がないか、あるいは結論から逆算したアプローチができているかを、仮説の検証とシミュレーションで実際に検証しているところです。 取り組みは十分? これらの対策は現在進行中です。現状を正確に把握し、問題点を見極めた上で、重要な局面で目指すべき状態や、そもそもやるべきことが実施できているかを確認しています。業務は忙しく時間的制約もありますが、抜け漏れがないか、逆算して工程を検証する取り組みを並行して行うことで、苦手な業務の改善につなげたいと考えています。もしうまくいかなかった場合は、さらなる仮説を立てて改善に取り組んでいくつもりです。

「比較 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right