戦略思考入門

捨てる決断で見える未来

捨てる選択の価値は? 捨てる選択が顧客の利便性を向上させる点や、惰性で物事を進めないこと、さらには専門家に任せる判断も時には必要だという視点は、とても印象深かったです。また、定量的な指標だけでなく、数字では表しきれない顧客との関係性などの判断基準も併せ持つことで、より良い「捨てる」選択ができると感じました。さらに、トレードオフが発生する要因として、資源の制約(人・もの・お金)と、相反する性質を持つ要素(例:筋力とスピード)の両面が影響していることに新たな学びを得ました。 数字だけで判断できる? 一方で、定量的な指標だけで判断が難しい業務においては、組織に与えるインパクトを示す基準(影響を受ける人数、エンゲージメント、理解度など)を設け、時間の制約がある中で優先順位を決める際に活用することが重要だと感じました。たとえば、営業活動では顧客にとっての売上や利益、自社商品のパフォーマンス、そして時間あたりの生産性などを考慮し、何を実施し、何を見送るべきかを判断する手助けとなるでしょう。今年度の業務においても、組織に与える影響度(影響を受ける人数や影響の持続性など)の観点から整理し、雑務的な作業が惰性によるものになっていないか、また新たな取り組みを始める際には既存の何かを削減するという視点も持って活動していきたいと考えています。

データ・アナリティクス入門

数字でひもとく学びの魅力

講義の要点は見えてる? 今回の講義を通じ、問題解決プロセスにおいて重要なポイントを再認識しました。特に、あるべき姿と現状の間にあるギャップを具体的な数字で示し、関係者全員で合意を取る必要性を強く感じました。定量的に現状とあるべき姿を比較することで、解決策の効果を明確に把握することができると実感しました。 MECEの意味って何? また、MECEのとらえ方についても改めて考える機会となりました。意味のある分類方法を意識し、意図しない「その他」に頼らず、明確な目的意識を持って分類することの重要性を学びました。これにより、情報の整理がより具体的で理解しやすくなると感じています。 分類にはどんな工夫? さらに、自社サービスのポジションや方針を決める際、特にB2B2Cの業務モデルにおいては、顧客自身とエンドユーザーの双方をMECEに基づいて分類する必要があると再認識しました。具体的には、顧客規模や産業、予算状況といった基準で顧客を分類し、エンドユーザーについては年齢、性別、アプリの利用状況などを考慮することが大切です。 投資の判断はどうする? 以上の学びをもとに、現状とあるべき姿のギャップを明確にし、自社のリソースが十分に機能しているか、あるいはどの程度の投資が必要かを判断するための貴重な材料としたいと考えています。

クリティカルシンキング入門

数字が紡ぐ学びのストーリー

数字をどう分解する? 数字はグラフ化することで、視覚的かつ直感的に捉えやすくなり、説得力が増します。そのため、数字から情報を得る際は、ひと手間加えて分解することが重要です。ただし、単に区切るのではなく、仮定を立てた上でMICEを意識した切り口で分解する必要があります。分析を進めて結論にたどり着く過程では、短絡的な判断を避け、「本当にそうか?」と立ち止まって丁寧に確認する姿勢が求められます。 システムプロジェクトで何が大事? システムの導入や改修、さらには現行システムの廃止などのプロジェクトを進める際には、現状の課題と期待される改善点を明確に提示するために、数字を用いたデータ分析が役立ちます。システム関連のプロジェクトは多額の費用が動くため、慎重な判断が必要です。そのため、さまざまな切り口からデータを分解し、要件と費用の比較検討に活かすことが大切です。また、社員向け研修の終了後には、受講者アンケートの結果を分析し、そのフィードバックを次の計画に反映させる方法も有効です。 苦手意識はどう克服? 一方で、数字に対して苦手意識を持つ人もいます。私自身、業務で直接データを扱う機会はあまりありませんが、定期的に報告される各種レポートを基に、MICEを意識した分解の手法やデータの取り扱いに徐々に慣れていきたいと考えています。

アカウンティング入門

数字が語る!経営の秘密

企業の財務構造は? 各企業が目指す価値提供やビジネスモデルに応じ、PL(損益計算書)の構造は異なります。それぞれの企業に合わせた項目を加えることで、より実情に即した財務分析が可能になるという点が印象に残りました。 業界の利益率は? また、物理的な資産が大きい業界では売上利益率が低くなる一方、知識やサービスを提供する業界では利益率が高い傾向があるという違いも理解できました。こうした違いは、各業界の特性を踏まえた経営判断に大いに役立つと感じています。 決算情報の使い方は? 加えて、決算説明会での質疑応答の内容を正確に把握し、それを経営や社内説明に活かすためには、まず自社だけでなく親会社の決算資料を熟読する必要があると感じました。さらには、競合他社の情報と比較することで、自社の利益構造や目指すべき方向性の違いを明確にできると実感しています。 コンサル費用はどう? 一方で、IFRSの理解や、親子上場においてどのように子会社の利益率を確保するかという点、さらにはコンサルティング業務における人件費の扱いについての疑問も生じました。もし自社がコンサルタントを活用する場合、どの費用項目に計上するのか、またコンサル側から見ればその費用がどのように分類されるのかについて、今後の学習を通して深く理解を進めたいと思います。

アカウンティング入門

実践で学ぶ本気の事業計画

事業開始のコンセプトは? 事業を開始する際は、まずコンセプトを明確にすることが求められます。そのコンセプトが、競争社会の中で勝ち得る技術や差別化の要素を備えているかどうかをしっかりと確認することが重要です。 資金計画はどうする? 次に、コンセプトを実現するために必要な具体的な費用を試算します。この費用の算出時には、キャッシュで対応すべきか、あるいは銀行からの借入れなど別の資金調達手段を検討する必要があります。現実的な資金計画を立てることが、事業成功の鍵となるのです。 投資試算の基準は? また、普段の研究開発業務の初期段階や、個別のプロジェクト検討時にも、開発費や投資額、商品の市場投入までの期間、予想される収益を試算することが大切です。最低限の黒字ラインや、これ以上の黒字が見込める場合にプロジェクトを実施する判断軸を用意し、それが自分だけでなく他者にも納得してもらえるよう、幅広い観点から検討する必要があります。 情報収集は十分? さらに、ビジネス雑誌やニュースに日頃から関心を持ち、他業種のビジネスプランや決算情報を解析する習慣を持つことがポイントです。こうした情報収集を継続することで、現場で実際に資金を管理する部門と積極的に連絡を取りながら、より広範な知識と情報を得ることが可能になります。

データ・アナリティクス入門

実践で切り拓く学びの扉

A/Bテストは何が見える? A/Bテストは、2つの施策を比較し、どちらがより適しているのかを実際のユーザー行動に基づいて判断する有効な手法です。アメリカ大統領選などの大規模な事例でも用いられている点が印象的で、仮説だけでなく実績に裏打ちされた評価がとても参考になりました。 演習で何を実感した? また、演習を通じて、問題の各要素をステップごとに分解することで、どのデータを抽出すればよいかが具体的に見えてきます。こうしたプロセスは、原因の特定を容易にし、問題解決に向けた新たな視点を提供してくれました。 業務再構築はどう進める? 社内業務の再構築にあたっては、まず課題を洗い出し分類した上で、それぞれの課題のどこに原因があるのかを要素ごとに分解して検証する方法が効果的だと感じました。Howに飛びつく前に、What、Where、Whyの各段階を踏むことで、より論理的に解決策を見いだすことができると思います。 原因探しで見つけたヒントは? さらに、課題に対する取り組みでは、要素を段階ごとに書き出す過程が、問題自体の理解を深め、原因の特定に大いに役立ちました。その後、適切なフレームワークを用いて目的に沿った仮説を立て、多角的な視点から検討することで、より実践的な解析が可能になると実感しました。

データ・アナリティクス入門

具体例で感じる数値分析の魅力

精緻な数値はなぜ? データの数値が精緻であることの重要性について、具体例を通じてしっかりと学ぶことができました。ただ単に平均値を算出するのではなく、その数値が持つ意味や背景を理解することが、正確な分析と意思決定に直結する点が印象的でした。 目的分解は本当に必要? また、目的を明確にした上でデータを要素に分解し、具体的な項目ごとに比較することが不可欠であると実感しました。単一の指標だけでは十分な判断材料とはならず、複数の視点からデータを総合的に見直すことで、初めて意味ある洞察が得られると理解しました。 比較手法には何が効く? さらに、PC購入の事例などから、データの比較が意思決定において大きな役割を果たすという点が強調されました。これを踏まえ、自身の業務に直結する営業データの分析―受注数、流入経路、企業特性、自社取引実績、月ごとのニーズや競合の状況など―を、目的に沿ってExcelで整理しながら分析する手法が非常に有用だと感じました。 多角的意見交換はどう? グループワークでは、異なる業界や職種の仲間と意見交換を行うことで、多くの刺激を受けることができました。多様な視点に触れることで、自分の分析方法や業務運営に対する考え方に新たな気づきを得ることができ、非常に有意義な学びの場となりました。

データ・アナリティクス入門

仕事が変わる学びのヒント

a/bテストはどう? 複数の打ち手が存在する場合、どの選択肢が有効かを判断する上で、a/bテストを活用する方法が効果的です。現状、すぐに取り入れられる業務は思いつかないものの、WEBサイトを活用した効果測定が必要な際には、積極的にこの手法を取り入れていきたいと考えています。 自己訓練の意義は? また、業務に限らず日常生活においても、what-where-why-howの視点を意識して自己訓練を重ねることで、分析能力の向上が期待できると感じています。 障害分析はどう? さらに、このwhat-where-why-howの手法は、障害分析から品質向上のための打ち手を検討する業務において、非常に有用です。さまざまなデータを収集し、仮説を立てながら具体的な対策を検討し、実践していくというプロセスは、日常業務においても積極的に取り入れていく所存です。 対象選定の方法は? まずは、打ち手が必要な対象の選定から始めたいと考えています。現状、日々さまざまな障害が発生しているため、効率よりもまずは障害が削減できる対象を明確にした上で、詳細な分析に取り組んでいくつもりです。そして、学んだ内容を個人のスキルに留めず、職場全体で共有することで、社内の共通ノウハウとして全体のレベルアップにつなげたいと思います。

データ・アナリティクス入門

業務に役立つ分析スキルを身につける方法

予測を立てる重要性は? グラフなどの資料を見る際、自分なりの予測を立て、仮説を立てて実態との違いを確認することは重要です。このプロセスでは、仮説の誤りをマイナスに捉えず、新たな課題や問題に気づく機会として扱うことが求められます。 分析のサイクルをどう回す? 分析の基本である「目的・仮説・データ収集・仮説検証」のサイクルを回すことについては、業務で分析を行う際に疎かになっていたと反省しました。数字に集約した分析を学ぶなかで、代表値(単純平均、加重平均、幾何平均、中央値)や散らばり(標準偏差)のそれぞれが適した状況で使い分けることが重要であると再認識しました。 患者数低下の原因とは? 紹介患者数の低下対策を立案する際、まず分析のプロセスをしっかりと踏むことが大切です。特に目的を明確にすることで、求めたい結果を得るためのポイントとなります。次に、どの視点で分析を進めるかを判断し、グラフや数字を用いて実行していきます。 具体的には、紹介患者数低下の分析では、近隣医療機関からの紹介の減少が課題(目的・問い)となります。減少の要因について仮説を立て、その後、取るべき分析の視点(インパクト・ギャップ・トレンド等)を考慮してデータを収集し、グラフ化・数値化します。最後に、分析結果と仮説を検証し、対策を立案します。

マーケティング入門

感動体験が未来を拓く

感情と体験のつながりは? 「経験が感情に紐づき、その人にとって唯一無二になる」という考えが最も印象的でした。単に商品を販売するのではなく、顧客との長期的な関係を築くことでライフタイムバリューに結びつけるというアプローチは、体験の変化や社会の課題解決といった視点が、長期的な顧客関係形成において重要であることを教えてくれました。 なぜ起業の知見が必要? この学びは、新規業務の提案に活かすとともに、将来的な起業にも役立てたいと考えています。特にスタートアップでは、短期的な成果と長期的な仕組み作りの両面が求められるため、大手企業の事例だけでなく、中小企業の成功と失敗の両パターンから経験を積む必要があると実感しました。そのため、書籍や動画サービスを利用し、情報を常に収集する習慣を大切にしています。 どうやって学びを深める? 具体的には、書籍と動画の二つの媒体から継続的に情報を得る計画です。購入した本は全て読み通すのではなく、目次やダイジェストを参考にし、読むべき内容かを判断してから深く読み込むようにしています。また、今後は学習時間に余裕ができると考え、その時間を有効活用して継続的な学びを心がけるつもりです。さらに、部署内でアウトプットの機会を設け、知識を伝えることでさらに習熟を目指していきたいと考えています。

データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。

データ・アナリティクス入門

数値を超えて感じる学び

比較基準はなぜ? 率の比較を行うことで、比較の基準を統一できることが分かりました。実践におけるクリック率やコンバージョン率の違いを、単に数値だけで良し悪しを判断するのではなく、プロセスを分解して問題点を洗い出す視点が重要だと感じました。その結果、新たな気づきや解釈が生まれる可能性があることも実感しました。 幅広い思考はどう? また、原因を探る際には「思考の幅を広げる」ことが大切であると分かりました。抽象的な要素を積極的に取り入れ、そこから掘り下げる手法が効果的であるという点も大きな収穫です。 集計活用はどうする? 実際の業務でどこまで活かせるかは未知数ですが、今回の経験を基に、依頼されたデータの集計を活用して分析に取り組んでみようと考えています。職場の方からもアドバイスをいただき、お支払いされた方の年代や件数などから比率を算出し、それらを抽象的な観点で分析することで、販売活動に活用できるデータへと繋げられないか検討していきたいと思います。 分布の謎は何? まずは抽出したデータから比率を計算し、年齢などの属性が支払いにどのように影響しているのか、その際の母数の設定についても検討していきます。その後、なぜこのような分布になるのか、概念的な原因を考え、さらに深く掘り下げてみたいと考えています。
AIコーチング導線バナー

「業務 × 判断」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right