クリティカルシンキング入門

効果的なミーティング資料作成術、実践編

資料作成の重要ポイントは? 社内・社外のミーティング資料を作成する際、次のポイントを留意すると、より効果的なコミュニケーションが可能です。 まず、グラフの選定やフォント、色、アイコンの使用方法は、なんとなく選ぶのではなく、読み手にとって最適なものを考えて使用することが重要です。フォントや色にはそれぞれ与える印象が異なるため、その特性を理解して適切に選ぶことが求められます。 次に、スライドの情報配置ですが、相手の動線に沿って配置し、情報を探す手間を省くことが大切です。伝えたいことのデータや情報を整理し、読み手が自然に理解できるグラフや資料にすることが必要です。 タイトルとリード文の工夫で差をつける? 文章作成については、まずタイトルに関心を引く要素を盛り込むことが重要です。また、リード文の冒頭にはアイキャッチを置き、読み手の注意を引くようにします。さらに、読みやすい体裁を心掛け、対象となる読み手に合わせた文章の硬軟や用語選びに注意を払います。 プレゼン資料はどう設計する? 役員向けの施策提案の際のプレゼン資料については、特に伝えたいメッセージやポイントが明確に伝わる文章にすることが重要です。そのため、役員の読む順序を考慮したスライドデザインに仕上げるようにしましょう。 また、全社向けの新制度や案内の資料を作成する際は、全社のリテラシーに合わせた用語を使用することがポイントです。興味を引くタイトルやリード文を工夫し、読む意欲を引き出すことを心掛けます。 資料作成スキルをどう高める? 資料作成のスキルを向上させるために、これまでの資料を振り返り、今回学んだポイントで見直すことが実践的な練習になります。また、週に何度か実施している全社向けのアナウンスでは、新たに学んだポイントを活用して資料を作成することも効果的です。

データ・アナリティクス入門

ロジックツリーで退職分析に挑戦

自分に関係付ける重要性とは? どの内容も聞いたことがあるものでしたが、自分に関係付けて考えたことがないと気付き、少し恥ずかしい思いをしました。特に、ロジックツリーについては知識としては持っていたものの、実際に描くことはほとんどありませんでした。今後は退職分析において、要素分解を試みたいと思っています。こうした学びに必死になって取り組める環境に飛び込んで良かったと、改めて感じています。 問題解決の思考法はどう実践する? 問題解決のプロセスとして、What(何が問題か)、Where(どこに問題があるか)、Why(なぜ問題が起きているか)、How(どうするか)の順に考えることを学びました。しかし、私の場合、特に「Why」にこだわりすぎて哲学的になりすぎたり、わからなくなってしまうことがあります。そのため、この順番通りに愚直に考え、PDCAサイクルのように思考を回していきたいと思います。 人事データの分類方法は? 私は人事部でデータ分析を担当しています。ロジックツリーにおいて、人事データに関する情報は、「個人情報」や「雇用情報」などに分類されます。具体的には氏名、生年月日、性別、入社日、部署、役職、資格、経験、語学といった情報です。これをMECEにするためには、さらに細かく分ける必要があると感じました。また、人事データという漠然としたカテゴリーから、具体的に項目を洗い出すことが可能だと思いました。 実践のために心掛けることは? 実践においては、手を動かし、描き出すことが重要です。周囲のメンバーと積極的に対話し、多角的な意見を収集するよう努めたいと思います。同時に、目的を明確にすることを忘れないように心掛けます。そして、私は製造業に勤めていますので、「直接部門」と「間接部門」を混同しないよう、気を付けて分析していきたいと思います。

デザイン思考入門

発散と共鳴で生まれた革新

どんなデータで戦略化? 私の顧客は主に社内の営業担当で、取得できるかどうかに関わらず、どのようなデータがあればより戦略的な活動が実現できるかというアイデアを集めるブレーンストーミングが面白いと感じています。現状、データ提供側は、こうしたデータをもとに顧客の考えや行動を理解し、営業がその仮説に基づいた行動に移ることを前提としているため、実際のデータ活用にはつながっていないと考えています。そのため、単に可視化しているデータに対する意見収集にとどまらず、営業として必要なデータについても積極的に意見を集めたいと思っています。 伝え方はどう変える? 既存のデータの可視化においては、私自身が顧客(営業)視点で開発を進めています。しかし、システムベンダーとの要件定義の際、どうしても自分が実現可能だと感じているアイデアしか伝えがちでした。そこで、直近のシステム改修にあたっては、実現が難しいかもしれないアイデアも含め、幅広い提案をもとに話し合いを行いました。 代案提示の意味は? その結果、実現不可能に見えるアイデアに対しても、ベンダー側からは「こういった形なら実現可能」という代案を提示していただくことができました。これにより、自己完結する前にアイデアを言語化し、関係者に発散することの重要性を学びました。 参加者選定どうする? また、ブレーンストーミングの手法についても新たな学びがありました。これまでは、同じグループや部内で取り組むレクリエーション的なブレーンストーミングにおいて、出されたアイデアがどこか似通っており革新的なものを得られなかった印象がありました。今回、出したい成果に合わせて参加者を選び、初めからブレーンストーミングの設計を行うことで、以前感じていたもやもやの原因がわかり、スッキリとした気持ちになりました。

データ・アナリティクス入門

仮説習得が拓く未来の学び

仮説はどう活かす? スピードや精度を向上させるためには、分析の初期段階で仮説を立てることが重要だと学びました。結論に向けた仮説と問題解決のための仮説という二種類の仮説があり、それぞれ目的や時間軸に合わせて使い分けることが求められます。 フレームワークってどう活かす? また、3Cや4Pなどのフレームワークを活用することで、思考が整理され、仮説形成が容易になると感じました。仮説に沿って必要なデータを抽出し、場合によっては新たにデータを取得するプロセスは、効果的な分析の基本と言えます。数字で見えにくい効果も、可能な限り数値として示すことで説得力が増し、合理的な判断材料となります。 数字で信頼はどう? 具体的には、コンバージョンレートなどの数値計算により、直感だけに頼らず理論的な判断が可能となります。フレームワークを用いることで、業務のスピード感と精度が向上した経験もあり、反対意見を含めた多面的な情報収集が仮説検証の信頼性を高めると実感しました。 新機能はどう検証する? さらに、新機能をリリースする際には、3Cの観点から分析して優先度を明確化したり、施策ごとの「影響度×実行難易度」を評価することで、迅速な判断を下しています。ユーザーインタビューにおいては、どの層のユーザーがどのフェーズで不満を感じているかを仮説から検証し、具体的なデータに基づいて問題点を抽出する工夫も行っています。 仮説と判断はどう連携する? 週に一度、仮説をもとに業務課題を整理し、必要なデータを洗い出すワークシートを作成するなど、日常的な業務の中でも「仮説→データ→判断」の流れを徹底しています。毎月、ユーザーアンケートやインタビュー結果の分析から改善案を提案し、社内でのレビューにてその流れを共有することで、施策の精度や実行力の向上に努めています。

戦略思考入門

意思決定の極意:選ぶ勇気と捨てる技

感情とデータ、どちら? ビジネスにおける意思決定では、「捨てる(選択する)」という判断が必要なことがあります。限られた時間や資源の中で業績に貢献するための選択を行う際、感情的な理由に基づく判断は避けるべきです。「創業時から続けてきたから」「やめると処理が面倒だから」などの感情論を優先すると、業務が増え続け、効率が低下します。捨てるという判断には、定量データを参考にして指標を設定することが重要です。 定量と定性、どう? 中には「顧客とのつながり」や「担当者との関係性」などを指標にしている場面もあります。確かに、定量的なデータに基づく判断は重要です。しかし、何を具体的に取捨選択するかを決める際には、定性的な考え方も柔軟に取り入れることが有効だと感じました。すべてを定性的な考えだけで進めるのではなく、一定の根拠を持って選択肢を絞り込みつつ、関係者からの意見も取り入れながら精査することが大切だと思います。 施策の見直しは? 私たちのチームで行っている施策には、利益に対する投資対効果が出ていないものも少なくありません。人員が減り、残った社員への負担が大きくなりつつあります。中長期的な効果を見据えて進めている施策もありますが、現状では工数が増え、残業の増加やクオリティの低下が問題となっています。今回学んだ「捨てる」という概念を活用し、進行中の施策を棚卸しし、本当に今行うべきかを整理し、優先順位を再考したいと思います。 効果の測定はどう? まずは施策が生み出している利益や売上について数値的データを集めることから始めます。そして、実際にかかっている工数を把握し、投資対効果を測定します。短期的な成果を目的とする施策と中長期的な成果を目的とする施策にそれぞれ指標を設定し、優先順位を明確にし、自分のタスクに落とし込んでいくつもりです。

クリティカルシンキング入門

伝わる!魅せる学びのヒント

グラフの伝え方は? WEEK4では、まず「適切な表現方法」について学びました。グラフに関しては、何を伝えたいかを軸にしてグラフを選び、作成することが大切だと感じました。同じデータでも、グラフの種類によって伝わりやすさが異なるため、何についてのデータかが一目でわかるよう工夫する必要があります。 過剰装飾は逆効果? また、文字情報では過剰な装飾が逆効果になるとともに、書体や文字の色によって印象が大きく変わることを学びました。アイコンや図を加えることで視覚的な理解を促進できますが、加える要素がノイズとならないように注意することが求められます。 スライド配置はどう? さらに、スライド作成においては、情報の順番を意識しながら文字やグラフを配置することが必要です。複数の情報をまとめる場合でも、最も伝えたいポイントに絞ることで、読み手にとって分かりやすい構成を作る工夫が大切だと感じました。 引き込む文章は? 一方、「読んでもらえる文章の書き方」では、冒頭部分の件名や1スクロール以内の情報で相手の興味を引くことの重要性を学びました。ただ文章を羅列するのではなく、伝えたい内容を整理し、読み手が自然と読み進めたくなる工夫が求められます。 プレゼン資料はどう? 社内でのプレゼンテーションや資料作成においては、注目してほしい内容に合わせたグラフや、情報の配置の工夫、目次や見出しの活用が効果的です。また、社外向けのメールやポスター、動画のサムネイルなどでは、件名や冒頭で相手の興味を引く工夫と、誰にでも伝わる言葉選び、書体や色彩の使い方が印象に大きく影響することを学びました。 全体の学びは? 全体として、視覚的な工夫と分かりやすい文章構成の両面から、相手に伝わる情報発信の方法を学べたと感じています。

データ・アナリティクス入門

データ分析の極意と失敗しない一歩

ステップを踏む重要性は? ステップを踏むことと全体像を把握することは大切です。MECE(Mutually Exclusive, Collectively Exhaustive)の視点で全体を捉え、すぐに行動するのではなく、熟慮することが重要です。現状把握、原因分析、目標設定、そして打ち手の流れを理解する中で、特に現状把握が最も重要となります。多様な切り口から複数の要因を見つけ出し、そこから原因を確定することが求められます。例えば、QCサークルのような取り組みが有効です。そして、問題解決の目的が達成されたかどうかを検証することも忘れてはいけません。 問題解決のパターンとは? 問題解決には二つのパターンが存在します。一つはあるべき姿と現状のギャップを埋めるもので、もう一つは将来的な目標を現状と比較し、その余白を埋めるものです。後者は単に正常に戻すだけではないという点がポイントです。 原因分析の力量が成功を決める? 私自身、仕事の中で問題を解決する手法を使用していますが、事故対応策の相談や質問を受ける際、絡まり合った要因を考慮しながら原因を探り、対策を講じています。問題が単純に解決できる場合もありますが、連鎖的に解決される場合もあり、対応策が多岐にわたることがあります。原因分析の力量が重要であり、そのためには切り口の選び方が解決の度合いを大きく左右すると思います。 検証不足は問題を招く? 気になる点としては、要因分析から原因把握を行う際に、十分な検証を行わずにすぐに解決策に飛びついてしまうことが多く見られます。複数の解決策を列挙し、その中から重要度が高く、効果があるものを優先して対応することが肝心です。それでも上手くいかない場合には、PDCA(Plan-Do-Check-Act)サイクルを再検討することが必要です。

データ・アナリティクス入門

データ分析で実現する未来の可能性

比較の重要性とは? データ分析において、比較は極めて重要な要素です。要素を整理し、性質や構造を明確にすることで、なぜ「良い」あるいは「悪い」と判断されるのかを理解することができます。判断するためには、特定の基準や他の対象との比較が必要であり、比較を通じて初めてデータに意味が生まれます。 目標設定の重要性 分析には目的や仮説の明確な設定が不可欠です。分析の目的が曖昧であったり、途中でぶれてしまうと、都合の良いデータばかりを使う危険性が生じます。また、不要な分析に時間をかけてしまうリスクもあります。したがって、「何を得たいのか」という分析の目的と、それに必要なデータの範囲をしっかりと見極めることが必要です。 データの特性と可視化 データは質的データと量的データに分類され、さらにそれぞれ名義尺度・順序尺度または比例尺度・間隔尺度に分解できます。それぞれのデータの特徴を理解し、注意しながら扱うことが重要です。異なるデータを組み合わせることで、ひとつのデータだけでは見えてこなかった新しい情報を得ることが可能です。これらを効果的に可視化するために、グラフを利用しますが、グラフには適した見せ方があります。例えば、割合を示すには円グラフが、絶対値の大小を比較するには棒グラフが適しています。 新プロダクトの市場分析 現在、私は新しいプロダクトのリリースによって市場規模がどれだけ拡大するかについての分析を進めています。分析結果を基にした組織全体でのコンセンサス形成が不可欠であり、そのためには分析結果をわかりやすく可視化することが重要です。講義で学んだ内容をもとに、収集したデータをEXCELで整理し、グラフで可視化する予定です。どのデータをどのグラフで可視化するかは、講義の知識を活用しつつ、基準の設定も意識しながら判断しています。

データ・アナリティクス入門

仮説で広がる学びのストーリー

仮説実践の難しさは? ライブ授業では、複数の仮説を立てるという基本的な部分が十分に実践できなかった点が痛恨でした。一つの仮説に固執せず、他の可能性も探る姿勢が足りなかったと感じています。また、MECEの視点で仮説を整理することも十分にできていなかったため、異なる切り口からの検証が不十分でした。 どう多角的に考えた? 仮説を立てる際には、まず複数の仮説を提示し、その中から最適なものを選び抜くことが大切です。一つの見方に偏らず、様々な要因を網羅することで仮説同士の整合性と広がりを持たせることが求められます。例えば、仮説の検討時には「ヒト」「モノ」「カネ」などの多角的な視点を意識することで、より具体的かつ網羅的なアプローチが可能になると感じています。 整理と評価はどう? 全体としては、仮説を立てるポイントが明確に整理されており、その点は非常に評価できると感じています。今後は、具体例を積極的に取り入れながら、仮説の網羅性や検証方法をさらに深めると、理解もより一層深まるでしょう。 検証法をどう考える? また、仮説を立てた後にその妥当性をどのように検証するかも重要なテーマです。MECEを実践した具体例について自分の言葉で説明できるようになると、思考の質はさらに向上します。日常の小さな問題にも仮説を導入して検証することで、実務における分析力や判断力の強化に繋がります。 チーム成果はどう見る? さらに、データ分析チームのマネージャーとして、自分自身で分析計画を立てるとともに、チームメンバーへの具体的なアドバイスや指摘ができる状態を目指すことが求められます。今回学んだ仮説思考を活用し、チーム成果を資料やグラフでわかりやすく可視化する取り組みは、今後のマネジメント業務においても大いに役立つと感じています。

クリティカルシンキング入門

疑いが拓く学びの扉

本質をどう捉える? 本質的な課題を捉えるためには、まず目的を明確にすることが大切だと感じました。何のために、何を問うのか、その根底にある本質に迫ろうとする中で、当たり前と思い込んでいる事柄に疑いの視線を向けると、より本質に近づけるのではないかと思います。また、その問い方は単純な二者択一に終始せず、柔軟な姿勢を保つことが重要です。問いは一度限りではなく、何度も継続して行うべきで、その際、視点が偏らないよう多角的に分析し、具体的な実践を心がける必要があります。統計的なデータやその分析手法も、このプロセスにおいて有効なツールとなるでしょう。 本当の課題は何? 私はIT業界で働いており、この考え方は特に要件定義工程で役立つと感じています。本当にその機能が必要なのか、ユーザの真の課題は何か、また解決策がユーザ側の視点から見て適切かどうか、といった検証が必要な場面です。さらに、バグや障害対応においても、なぜ問題が発生したのか、どのタイミングで混入したのか、過去の事例と比較することで原因を追求する際に、このアプローチは有用です。開発プロセスの改善やリスク管理の分野でも、「今までのやり方が正しいのか」という疑念を持ち続け、常に振り返りながら改善を図る上で効果的だと考えます。 問いの立て方は? 「本質的な課題を捉える問いの立て方を身につける」ための行動計画としては、まずは疑いながら考える習慣をつけることから始めます。仮説を立て疑うことを日常に取り入れ、必要な理論や手法を書籍や研修を通して体系的に学びます。その後、実際の会議や小さなチームミーティングで本質的な問いを繰り返し投げかけ、意識を高めることを目指します。実践後は振り返りを行い、その結果を次回に活かすというサイクルを繰り返すことで、確実に身につけていけると考えています。

データ・アナリティクス入門

分解と検証で明かす解決のヒント

どこに問題潜む? 問題の原因を探るためには、まずプロセスを段階ごとに分解するアプローチが有効です。これにより、どの段階に問題が潜んでいるのかを明確にできます。同時に、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが重要です。決め打ちせず、判断基準の重要度に基づく重み付けを行いながら評価する方法がおすすめです。 条件は整ってる? A/Bテストにおいては、それぞれの施策を比較・評価する際、できる限り条件を揃えることが求められます。 どうやって精度向上? また、ステップを踏んでデータ分析を行うことで、問題解決の精度を高めることができます。ある程度有望な仮説が立てられたら、まずは実行し、実際の市場や顧客の反応をもとにデータを収集して検証を重ねる方法が効果的です。 どこで・なぜ・どうやる? 自分の身の周りでデータ分析のトレーニングをする際は、まず「どこで(Where)」問題が発生しているのか把握し、次に「なぜ(Why)」その仮説が成り立つのかを立て、最後に「どのように(How)」打ち手の有効性を検証するプロセスが役立ちます。 どちらが響く? プロモーション活動のマネジメント業務において、インターネットを介した施策が難しい場合でも、どのパッケージが顧客に響くのかを検証する観点で実施することが可能です。例えば、協調すべき訴求ポイントをAパターンとBパターンで打ち出し、どちらがより顧客の反応を捉えられるかを分析・検証します。まずは、AパターンとBパターンそれぞれのアクションプランを策定しチームで共有し、条件をできる限り揃えられるよう協議します。その上で、予測されるボトルネックを洗い出し検証を進め、アクションが決まれば早速実行し、仮説検証を繰り返すことで問題解決へと結び付けていきます。

データ・アナリティクス入門

問題解決のプロセスで成果を出す方法

「Why」と「How」の探求は? 問題解決の4つのプロセスのうち、最後の2つである「Why(なぜ)」と「How(どのように)」について考えました。問題の原因を明らかにするために、プロセスを分解し、どの段階に問題があるのかを特定します。そして、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠を持って選定します。 学びをどう生かすか? これまでの学習でも、都合の良いデータばかりを集めないことや、仮説思考で柔軟に考えることの重要性を学んできました。同様に、「How」についても決め打ちせず、複数の選択肢を洗い出し、判断基準を設け、重要度で比較して解決策を選ぶようにします。 A/Bテストの手法とは? また、A/Bテストについても学びました。複数の案を条件を揃えて比較し、評価する手法です。複数の案を実際に試し、反応を確認しながら仮説検証を繰り返して評価します。ある事例では、スピードが重要で3ヶ月も待てないため、同時にランダム表示を選択しましたが、条件を揃える理由に納得しました。 黒字化への挑戦は成功? ちょうど今週、この学びを生かす機会がありました。自部門の数字が黒字にならない原因を考える場面があったのです。これは長年の問題で、まだ解決に至っていません。今週の学びを基に、原因や解決案を決め打ちせず、プロセスに分解し、複数の仮説を立て、根拠となるデータを示しながら解決策に向けた対策を考えていきたいと思います。 残業時間の原因は何か? 最後に、自身の月々の残業がなぜ80時間に達してしまうのかについても、4つのプロセスを用いて考えてみることにします。さらに、Q2で記載した問題の原因について、ある程度仮説を立てています。それらの仮説が正しいかどうか、データを用いて分析することを早速始めてみます。

「重要 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right