データ・アナリティクス入門

目的明確!小さな成功体験から学ぶ

分析はどう進める? 分析を始める際は、まず何をどのように比較するかを明確にし、普遍的かつ偏りのない俯瞰的な視点で対象を捉えることが大切です。その上で、最初に目的をしっかり設定し、仮説の構築を行うことが必要です。実際、どの手法を用いるかよりも、まず「何」を重視し、体系的に物事を整理していくことが大切だと実感しました。 目的は明確か? また、何をしたいのか、なぜそれをしたいのかという目的を明確にすることに十分な時間をかけるべきです。出発点のズレはプロセスが進むにつれて大きくなり、取り返しがつかなくなる可能性があるためです。これまで、単にデータを作成するだけで有用な仮説がなかったために、データが十分に活かせず埋もれていた傾向があると感じています。 成功体験は大事? 既に取り組んできた方法もありますが、完全には浸透していない部分もあると実感しています。そこで、今後は継続的に小さな成功体験を積み重ねることが重要だと考えています。 具体手順は? 具体的には、以下の手順を意識しています。 ・まず、複数の視点からデータを検証し、それぞれの状態を正確に把握する。 ・何と比較するか、またプロジェクトを進めるためにどのデータを比較対象とするかを明確に決定し、一度決めた基準は後で変更しない。 ・進捗の状況を見ながら、行動の軌道修正が必要か否かを判断できる体制を整える。 ・結果が出た際には、なぜそのような結果になったのか振り返り、データ上で整理しておく。

クリティカルシンキング入門

データ分析の意外な発見!新たな視点を持とう

数字分析で見落としはないか? 数字の分析を行う際には、単なる表面的な数字だけでなく、グラフ化することで視覚的に見やすくし、相手にも理解しやすくすることが重要です。さらに、グラフに1列追加することによって異なる結論を導き出すことができ、元のデータを再度検討することで、最初には見えなかった答えを見つけることも可能です。 事業計画に欠かせない視点とは? 分析においては、一つの傾向だけに満足せず、「本当にそうか」と自分に問いかける姿勢が大切です。特に事業計画を作成する際や収支計算、次年度予算に関しては、与えられた数字のみではなく、その背景をしっかりと分析して考えるように心がけたいと思います。また、プログラムに関連する学生や教員からのアンケートやフィードバックを受け取ったときも、それらをグラフ化して数値として表すだけでは不十分で、分類方法の再検討が必要です。 MECEをどう活用する? MECE(漏れなくダブりなく)を活用して、物事の意思決定において多角的に物事を分析することを心がけています。特に、MECEのプロセス分解を活用し、現在直面している意思決定を論理的に説明し、相手に納得してもらえるように取り組む予定です。 多様な視点で思考を深めるには? 自分の思考の傾向を理解し、常に多様な視点を意識した上で、一つの答えに満足しないように努めていきます。業務の中で特に事業計画の作成や収支計算の際には、これらの分析手法を積極的に活用していきたいと思います。

クリティカルシンキング入門

「データ分析の真髄を学ぶ:見逃さないコツ」

グラフを使う重要性とは? 数字データを扱う際には、以下の点に着目すべきと感じました。 まず最初に、グラフを使う選択肢を常に考えることが重要です。さらに、見えている数字だけで判断してはならないという点も大切です。また、一般的なデータの切り方が必ずしも正しいとは限らないことにも注意が必要です。 データ分解で深掘りする方法 データの分解では、当初出た傾向とは異なる結果が見える場合があるので、さらに深く分解することが求められます。その際、MECEを意識し、特にモレがないようにすることが重要だと思います。また、層別、変数、プロセスを使い分けることも必要です。 運用設計で注意すべき点 運用設計を行う際には、利害関係者がMECEでモレがないかを確認することが必要です。新規事業のフロー構築において、全体をプロセスで分解し、必要なツールを作成していますが、再度プロセスを確認し、より正確なものに仕上げていくことも大事です。 サマリーデータはどう見せる? クライアント提出用のサマリーデータに関しては、見せ方を工夫し、ニーズに応えた数字を提出することが求められます。そして、時間的なロスが生まれるかもしれませんが、一度作成したものを一日寝かせてから再度検証することを意図的に実施するべきです。 急ぎの案件での分析 急ぎの案件では、得たい数字が出た時点で分析を完結してしまうケースがあるため、これ以上分解できないかにこだわって現状把握を進めることが重要だと考えます。

データ・アナリティクス入門

データ比較で気づいた発見と反省

適切な比較対象とは? 「分析の本質は比較」という言葉が最も印象的でした。「Apple to Apple」と「Apple to Orange」という表現が動画で紹介され、過去に何となく使っていたことを思い出しました。しかし、改めて説明を聞くと、適切な比較対象を示す意義があることに気付かされました。 分析のプロセスを見直す 分析を始める前にまず目的を確認し、仮説を立て、そのためにどのデータを比較すべきかを考えるプロセスが重要であることを感じました。今まではこのプロセスを特に意識していなかったことに反省しました。ライブ授業のグループワークでは、人それぞれの多様な見方を感じ取ることができましたが、積極的に発言するメンバーがいる中で、自分がなかなか発言できなかったことを振り返りました。動画やライブ授業のまとめにあった「言語化・教訓化・自分化」が自分にはまだ足りていないと実感し、これからの取り組みに生かしていこうと思いました。 業務へのデータ分析活用 現在の業務でデータ分析を主に行うことは少ないですが、普段接するデータについても何を比較すべきかを考え、その視点を持って関わっていこうと思います。データを見る際には、まず目的を明確にし、何をアウトプットしたいのか、何のための分析なのかをしっかり考えて業務に取り組むことが大切です。データ比較を通じて新たな気づきを得るために、データに向かう際の意識を高めていきます。日々の業務でこれを実践していこうと考えています。

クリティカルシンキング入門

データを分解して新しい発見を得る方法

少ないデータを分解する方法は? 少ないデータを最初に見たとき、「わかることが少ない」という印象を持ちました。しかし、データを分解して考えることで、新たに見えてくる情報があることを実感しました。求める情報に対して、適切な分解方法を考えることができるようになったと感じています。 新しい気付きが得られない時の対処法は? また、分解しても新しい気付きが得られない場合でも、それは失敗ではなく、新たな学びであるという考え方に勇気をもらいました。この経験を経て、MECEを意識してデータ全体をさまざまな視点から分析し、手を動かして新しい情報を得ることを心掛けています。 具体的には、顧客データを分析し、仮定していたペルソナとのギャップを発見したり、イベントの参加アンケート結果を基に告知と実際の内容の違いを分析したりしています。また、施策の結果を数字だけでなく、さらに深く分解し新たな情報を提示しつつ判断しています。データを他のチームに依頼する際には、目的や期間を明確に伝え、無駄なデータのやり取りを減らすことを意識しています。 どんなデータが必要か整理するには? 「どんなデータがあれば知りたい情報が得られるのか?」をまず整理し、実際に手を動かしてデータを分解しグラフ化することで、多くの新たな発見が得られます。アンケートを行う際には、逆算して負担を軽減する項目や回答方法を検討し、Excelなどの利便性の高いツールを活用して効率的にデータを見られる環境を整えています。

データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

データ・アナリティクス入門

数字が紡ぐリアル戦略ストーリー

数字の意味は何だろう? 分析のアプローチについては、ただ単に分析を進めるのではなく、数字に基づくストーリーを意識することの重要性を実感しました。統計データを見る際にも、平均値だけでなくばらつきを把握することで、より正確な判断ができると感じています。データ全体の傾向を理解した上で、平均、中央値、最頻値といった代表値から最も適切なものを選ぶことが大切です。 課題解決の鍵は? また、顧客の課題に対して解決策を提案する場合、やみくもな分析ではなく、具体的な数字に裏打ちされたストーリーによって、提案の確度を高め、顧客の納得感につなげることが求められると考えています。顧客自身が「これなら解決できる」と信じ、実行に移していただくためには、具体的で説得力のある根拠が不可欠です。 戦略の軸は何か? さらに、これからある不動産ブランドの戦略を分析する際には、まず「何を知りたいのか」という問題意識をはっきりさせ、最終的にどのような結論に導きたいのかを明確にすることから始めます。その上で、価格帯やエリア、スペックなど細かい情報に分解し、必要なデータが取得可能かどうか確認することが大切です。 仮説はどう練られる? 次に、取得したデータをもとに、なぜその戦略が採用されているのかという仮説を立て、検証の優先順位をつけながら実態を深く理解していく流れが有効だと感じました。こうした手法を通して、現実に即した分析が行え、説得力のある結論に結びつくと確信しています。

クリティカルシンキング入門

点から線へ広がる学びの旅

学びの意味は何? この6週間の学びを通じて、知識が点から線へと統合される感覚を持つようになりました。これからは、以下の流れに沿って課題に取り組み、その答えを導き出していきたいと考えています。 問いの定義は何? まず、考え始める前に「問い」が何であるかを明確にすることが重要と感じています。次に、現状を丹念に分析するため、データを細かく分解し、ひと手間加えることでより深く理解できるよう努めます。また、視覚的に把握するために、MECEやロジックツリーといったフレームワークを活用し、論理の流れを整理します。 主張の組み立てはどう? さらに、根拠に基づいた主張の組み立てを心がけ、伝えたい相手に的確に伝わる文章や資料作成を実践していきます。その際には、作文では主語や述語、文章の長さに注意し、資料作成ではリード文を工夫し、データの順序や主張の強調、さらにグラフなどを活用して視覚的な伝達にも配慮します。 問題解決の鍵は何? 特に、営業課題や人事課題など具体的な問題に対しては、日々発生する小さな問題も含め、何を解決したいのかを常に意識しながら分析と主張のプロセスを実践していきたいと思います。そのため、まず一つの対象を決め、課題に対する答えを導き出すことに注力し、実施期限を設けることで意図的に時間を確保していきます。さらに、資料化した内容は他者と共有し、理解度や納得感についてフィードバックを得ることで、より良い解決策を見出していこうと考えています。

リーダーシップ・キャリアビジョン入門

理想のリーダー像を追求する旅

理想のリーダーとは? 私がなりたい理想のリーダー像は、メンバーをしっかり観察し、その特性や習熟度を考慮しながら、組織と個人の目標を達成するために導ける人物です。クールでありながら、時には感情的な側面も持ち合わせたリーダーをイメージしており、具体的には特定のリーダーの例を参考にしています。しかし、この講座を通じて心に残ったのは、リーダーが環境や部下の適性によって行動をうまく使い分けることも重要だということです。 論理思考の磨き方は? 強化したいスキルとして、まず論理思考力があります。論理性を高めるために、クリティカルシンキングの反復練習とともに「視点」を意識した状況分析、課題の明確化、解決手段の策定を行い、他方面からの検討を踏まえた提案を提示していくことを目指しています。具体的には、データ分析を基にしたマーケティングにおいて、分析の目的や軸、どのような洞察が得られたか、その課題に対して何がベストな解決策かを整理し、情熱を持って示すことができるように訓練したいと考えています。 事例発表はどうする? そのために、まずデータ分析に基づくマーケティングの事例において、その目的やビジョンを明示します。次に、自己の実践結果や事例を紹介し、それに賛同してくれるメンバーを集め、彼らの事例も収集し、必要に応じてサポートを行います。そして、月次部会や営業部長会議などの発表機会を通じて取り組みを紹介し、メンバーの成果が正当に評価されるような発表を目指します。

クリティカルシンキング入門

学びの姿勢で未来を切り拓く

6週間の振り返りは? 6週間を振り返ると、多くの学びがありました。クリティカルシンキングだけでなく、人生において学び続けることの重要性についても改めて確認できました。 大切な学びの姿勢は? 学びを進める上で重要な3つの姿勢として、目的を意識すること、自他の思考のクセを認識すること、問い続けることが挙げられます。また、相手視点での考察も重要であり、これを学びの前提条件として、今後も積極的に新しい学びに挑戦していきたいと思います。 問いと分析はどう? クリティカルシンキングでは、「問いは何か?」という点からスタートすることが大切です。分析過程においては、データの加工が必要であることを理解し、問いを解決するためには高解像度の分析を心掛けたいと考えています。そのためにはデータ分析の知識が重要です。また、主観に偏らず客観的に考えるために、フレームワークを活用する方法も知っておく必要があります。 知識の実践はどう? これらの知識は、以下のように自分の仕事で活用していきます。自部署の会議で発表する際は、明確な問いを基にPREP法を用いて内容を組み立てます。他者の言葉を理解する際は、相手の前提条件を考慮し、フォロワーシップを発揮して場の理解度を高めたいです。また、自分の考えをまとめる際は、アイデアを出す段階から問いを明確にし、誰に何を説明すべきかを意識します。対象に合ったデータ加工やスライド作成を行い、効果的なプレゼンテーションを目指します。

データ・アナリティクス入門

データ可視化で見えてくる新たな発見

分析の視点を再確認する方法とは? 前回の学びから、分析における視点として5つの要素、すなわち「インパクト」、「ギャップ」、「トレンド」、「ばらつき」、「パターン」に分けて考えることが有用であると再確認しました。数字をただ眺めるだけでは気づきが得にくい場合でも、目的に応じた適切な可視化を行うことで数字の意味を見出すことが容易になります。特に、可視化は自分の理解を深めるだけでなく、説明相手の理解や認識の統一にも役立つと感じました。 平均の取り方をどう活用する? 普段の仕事でもデータを扱っており、どのような代表値を用いてその数字の塊を特徴づけて解釈するかを意識していましたが、この学びを通じてさらに細かな平均の取り方を再認識しました。特に幾何平均の活用については、施策立案や来期戦略、予算作成の際に大いに役立ちそうです。例えば、年間の応募推移を過去5年間にわたって見たときに、どのようにトレンドの推移を適切に抽出するかなどを具体的に考えることができました。 日々のKPI管理で使える可視化手法は? また、日々のKPI管理についても適切な可視化が求められます。現在は折れ線グラフで推移を見ていますが、前年比や積み上げグラフなども必要かもしれません。ユーザーの行動を分析する際には、ヒストグラムを活用して傾向を掴むことも考えています。具体的には、インストールからコンバージョンまでの期間別ユーザー数を把握することで、より詳細な分析が可能になると考えています。

クリティカルシンキング入門

データ分析の新視点で営業資料をブラッシュアップ

異なる視点でデータを分析するには? データを分解して考える際、When, Who, Whatの切り口を意識し、複数の視点で分析することがデータ分析に繋がることを学びました。様々な切り口から傾向を掴み、本当にその見方で合っているかという疑問を持ちながら丁寧に読み解くことが大切です。今後は、業務でデータ分析を行う際に発見した1つの傾向に満足せず、疑問を持ち、様々な切り口を意識して業務を見直していきます。 効率的な分析手法をどう見つける? また、データの切り口は最初から細かくせず、大→小の順で考えると分析しやすいことも分かりました。 どのように営業会議資料を改善する? 最近の営業会議資料の作成業務では、ありきたりな角度でしか集計・分析できていなかったことに気づいたので、今後は様々な角度から分析を行い、グラフを作成するつもりです。SNSのフォロワー数分析でも、大きな範囲でしか数字を分けていなかったため、細かく区切って分析し直そうと思います。 効果的なグラフ作成のポイントは? 会議資料の作成においては、データ抽出の対象範囲を見直し、どのような角度で分析が必要かを持論として上司に相談しながら進めます。グラフは見せたい内容によって変わるので、相手にとって分かりやすい分析の内容を心掛けます。 SNS分析を向上させる方法とは? SNSの分析に関しても、1つの大きな傾向に縛られず、切り口を変えて再度分析し直すことを念頭に置いています。

「意識 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right