データ・アナリティクス入門

目的とデータがひらく未来

目的は何でしょうか? 今回の講義を通して、まず目的を明確にすることの大切さや、その目的に沿って適切な情報を集めること、そしてデータを加工し比較することで初めて分析が成立するという基本的な考え方を学びました。 難問の比較ってどう? また、難しいテーマの比較においては、直接的な比較だけでなく間接的なアプローチも可能であり、柔軟な考え方が求められると実感しました。特に、愛の価値の算出方法に触れた際は、自分の考えの枠を超える新たな視点に出会い、非常に勉強になりました。そして、これまで耳にしていた「Apple to Apple」という言葉の意味を実体験に基づいて理解することができ、当時の意図にハッとする瞬間がありました。加えて、どのデータが適切かという判断には個人差があることを実感し、さらなる経験の積み重ねが重要だと感じました。 学びはどう活かす? 今回の学びは、商品の販売企画やプロモーション活動にも役立つと考えています。実際、講義を受けた後からは、販売企画の場面で比較を意識するようになり、データ分析を通じて「新しいことがわかる楽しさ」を感じ始めています。 数字以外の視点は? さらに、来週からは数字以外の情報を分析する予定であり、どのような視点で分析を進めるのかが楽しみです。また、得られた情報を効果的に伝える方法についても興味があります。グラフや表、あるいは絵など、さまざまな手法がどのように利用されているのか、また絵を用いる場合にはどのようなアイデアが生み出されるのか、実際に皆さんのお話を聞いてみたいと思います。

クリティカルシンキング入門

課題を見極め、戦略を描く

なぜ分析が必要? 今週の学習では、ケースを通じて課題を特定し、解決策を導くための分析の流れや、グラフによる可視化の方法について考えることができました。特に、「課題解決に向けて、どの分析対象を選び、どのように可視化するか」を具体的に把握し、言語化・整理する難しさを強く実感しました。一見シンプルに見える分析やグラフ作成にも、明確な目的と意図が求められるため、「なぜそのデータを選んだのか」「なぜその形式で示したのか」を一つひとつ理由づけることが、説得力のある資料作成や意思決定支援へ繋がると考えています。 実践はどのように? これまで業務課題を解決する際に、「イシューの特定と分解」や「課題ごとの解決策の立案」、そして実現可能かつ効果的な施策の選定と実行というプロセスに十分に向き合えていなかったと感じています。現在、戦略立案の担当として自社の施策の検討・実行が求められる中、まずは適切なイシューを見極め、正確に分解した上で、実行可能性と効果を見据えた施策に落とし込む一連の流れを、今後より意識的に実践していきたいと思います。 思考力をどう鍛える? 今回学んだクリティカルシンキングの基礎を業務の中で意識的に取り入れることが、学びを深めスキルの定着に不可欠であると実感しました。入門編として体系的に学ぶ機会を得たことで、今後は書籍なども活用しながら継続的な学習に取り組み、クリティカルシンキングの実践力をさらに高めていきたいと考えています。業務においてもこの思考法を取り入れ、より良い意思決定や戦略立案に貢献できるよう努めていきます。

データ・アナリティクス入門

振り返りに潜む学びのエッセンス

フレームワークはどう活かす? 3Cや4Pなどのフレームワークを活用して、問題を細分化することで仮説を立てやすくなります。検討事項を分解することで、具体的かつ論理的な課題設定が可能になり、全体像が明確になります。 データ分析は何故重要? 既存のデータと新たに収集するデータを組み合わせ、多角的に分析を進めることが重要です。手持ちのデータをどのような視点で再分析するか工夫するとともに、公開されている一般データも活用して、消費者の行動傾向などの研究に取り組むと良いでしょう。さらに、必要な詳細データを得るために、広範な集団の傾向を把握できるアンケートや、特定の対象に対して深掘りするインタビューといった方法を、ケースバイケースで使い分けることで、既存データを補完し、分析の精度を高めることができます。 仮説はどう検証する? 仮説を立てる際には、複数の仮説を同時に設定し、それぞれの網羅性を持たせることが大切です。何気なく仮説を設定するのではなく、比較の指標や対象を明確にし、具体的な意図を持って検討することで、説得力のある仮説が構築できるでしょう。 なぜ仮説策定する? 仮説を策定する理由としては、検討マインドや説得力の向上、関心および問題意識の深化、意思決定のスピードアップ、そして行動の精度向上が挙げられます。普段の業務でも仮説構築は行われていますが、フレームワークを意識し、何を比較すべきか、対象は誰か、どのように情報を収集するかを十分に検討することで、より総合的で優れたデータ分析体制を整えることができます。

データ・アナリティクス入門

問題を解決するための分析フレームワーク活用術

問題の絞り込み方法は? 問題の箇所を明確にするためには、まず分析対象を絞り、原因を考えやすくします。また根本的な原因の仮説を立てる際には、3C(市場、競合、自社)や4P(製品、価格、場所、プロモーション)のフレームワークを活用します。そして、仮説に基づいてデータを集めます。この過程では、必要なデータが何かを見極めることが重要です。 仮説構築の多様性は重要? 仮説は複数立てるべきで、決め打ちにしないよう注意します。また、異なる切り口で網羅的な仮説を立てることも大切です。データ収集は、自分で取りに行ったり、誰かに聞いたりして行います。また、比較のためのデータも集めます。さらに、反論を排除するためのデータを集めることも重要です。自分に都合の良い情報だけを集めるのではなく、説得力のある分析を目指します。 データ分析のポイントは? データを見る際には、意図を持って分析します。例えば、問題箇所を絞り込み、フレームワークを活用して根本的な原因の仮説を立てます。その際、異なる切り口から多角的に仮説を立てるよう心がけます。そして、データを集めて比較し、反論を排除するための情報まで踏み込んで確認します。この一連のステップを可視化し、習慣化することが重要です。 どのフレームワークが適切? 仮説を立てるためのフレームワークについては、自分の業務に適したものを探し、過去の事例から有効なフレームワークを検証します。反論を排除する情報を集めるためには、周りのメンバーの協力を得て壁打ちを行い、反論点を意識的に探るようにします。

クリティカルシンキング入門

当たり前を疑い、論理で輝く

なぜ初めてで誤解した? クリティカルシンキングに初めて触れたとき、私はこれを「否定的に物事を見る思考法」と誤解していました。しかし、実際に学び、業務で意識して活用する中で、その本質は「物事を多面的に捉え、根拠に基づいて判断する力」であると実感しました。 どの意識が変わった? 今回の学習を通して、まず「当たり前だと思っていたことを疑う」ようになり、自分の考え方が大きく変化したと感じました。また、業務においては提案資料作成の際に、相手の立場に立って考察する意識が芽生えました。一方で、感情と論理を切り離す難しさも痛感し、事実と意見を明確に分けることの重要性を改めて認識する機会となりました。 どの根拠で提案する? 具体的には、提案力の強化に向けて、なぜその商品を提案するのか、どのような根拠があるのかを明確にすることの大切さを学びました。POSデータや市場トレンド、競合状況の分析に基づいた提案が、取引先の課題解決につながると感じています。 どうやって分析すれば? また、売上不振の際には、単純な感覚的判断に頼るのではなく、複数の視点から原因を分析する手法が有効であることを理解しました。こうしたアプローチにより、より具体的かつ説得力のある対策案を提示できるようになりました。 伝えるときの工夫は? さらに、社内での調整や報告においては、感情や主観が混じりがちな場面でも、事実と意見を明確に分けて伝えることが必要であると実感しました。これにより、会議や報告の内容がより論理的で理解しやすくなると感じています。

クリティカルシンキング入門

視点ひとつで未来が変わる

新たな発想は? 視点、視座、視野というワークを通じて、アイデアを広げる具体的なステップを学びました。各ステップで軸をずらし、視点を変えることで異なる可能性を引き出すアプローチは、短い時間でも新たな発想の扉を開く手法だと感じました。 批判的思考はどう? また、クリティカルシンキングという批判的思考法について学びました。一人でもテクニックを身につけることで、これまで経験してこなかった視点や発想に気づける点、そして周囲の意見を取り入れる大切さを再認識しました。この知見は、分析レポートの作成やデータの取り扱い、施策検討の場面で活かせると感じています。 レポートは分かる? 特に、分析レポートにおいては、読み手がアナリストだけでなく、企画者や経営層といった幅広い層であることを意識する必要があります。事実だけでなく、結果指標や売上といった視点でまとめるプロセスが、より分かりやすいレポーティングにつながると実感しました。 顧客体験を考える? また、企画者の意図や、提供するサービスがどのように顧客体験を改善するかを検討する際にも、今回学んだ視点の切り替えや多角的なアプローチは大いに役立つと考えています。 情報の真実は? そして、日々新聞や書籍などから情報を得る際には、事実と意見を明確に区別しながら、批判的な視点で読み解くことが重要だと感じています。題材を自分ごとに捉え、ベースとなる軸や書き手の意図を考慮しながら、自分なりの表現にまとめることで、本当に伝えたいことは何かを見極めることができると考えています。

クリティカルシンキング入門

資料作成の新しい視点を学ぶ旅

メッセージをどう活かす? 作成者のメッセージを深く理解し、グラフを作成して資料化するスキルを学ぶことが重要であると感じました。単に型にはめたグラフを選ぶのではなく、メッセージとの整合性を意識して見直すことが大切です。これまでの自分を振り返ると、資料とは作成者が伝えたいことを載せるだけではなく、伝える相手を理解し、相手が知りたい情報をわかりやすく伝える視点が重要だと気付きました。 相手に合わせる方法は? 報告や共有資料として、上司のプレゼン資料、部署内の担当報告資料、他部署への実施報告資料、案内資料など、日々の資料作成に活用しています。相手の役職、部署、経験値が異なるため、フォントや装飾、グラフの選択、デザインなどを相手に合わせて考えたいと思います。業務効率の観点でも、見た目がきれいな資料ではなく、目的が達成できる資料を作る意識が大切です。 グラフの選定で迷う? グラフに関しては、業務でグラフを使用する機会が少ないため、グラフの種類やそれぞれの得意とするメッセージについて理解を深める必要があります。調べて学ぶことや、過去の会社の資料などを振り返って読むことが学びにつながります。 資料の目的は何? 資料作成においては、次の手順を考えています。まず、過去の資料作成の手順を振り返り、自分の傾向を見直します。そして、次回作成時には資料で誰に何を伝えるのか、伝えるメッセージは何かを明確にし、それを常に見返せる状態を作ります。最後に、必要なデータを事前に調べ、グラフを作成するなどの準備をして進めます。

データ・アナリティクス入門

課題解決スキルが劇的に向上する方法とは?

実践による学びの深まり Week1から継続して学び続けた内容を、ライブ授業の演習を通じて「一気通貫」で実施することができ、実践に活用するイメージが具体化しました。特に、仮説は一度立てたら終わりではなく、段階ごとに検証を通じてブラッシュアップしていくこと、また分析は比較であることを強く感じました。さらに、課題解決のプロセスは「What→Where→Why→How」という順序で考えることが重要であると学びました。このプロセスを進める中で、「データのビジュアル化」や「多様な切り口を考えること」の大切さも再認識しました。 課題解決の新たな視点とは? 自分の仕事は基本的に社内の「課題」を解決することが主な業務であり、この講座で学んだ内容はあらゆる場面で活用できると確信しました。これからは、課題解決のプロセス「What→Where→Why→How」を常に意識したいと思います。問題を解決する際には、直ちにデータ分析に取り掛かるのではなく、まず問題の定義から始め、問題点を特定して原因を分析するというプロセスを「事前」に頭の中で描くことが重要です。それにより、無駄な作業やヌケモレを防ぎ、「How」を忘れずに取り組むことが可能です。 事前準備の重要性について 具体的には、すぐに「データ分析」に取り掛からないことを意識的に行い、事前にそれぞれの課題解決プロセスで必要な「タスク」をイメージし、タイムラインを引いて計画を立てることが大切です。最初はしっかりと言語化し、プランをドキュメントに起こしておくことを心がけます。

クリティカルシンキング入門

データから見える新事業の可能性探し

データ分析はどう見直す? 得られたデータをそのまま解釈するのではなく、解析の手間を加えることで新たな理解を得ることが可能です。具体的には、割合や相対値を使ってデータを加工したり、数値をグラフや図に変えて視覚的に理解する方法が有効です。また、多くの視点や切り口でデータを分け、特徴的な傾向を探ることが重要です。この際、単に機械的に等間隔で分けるのではなく、その方法が本当に適切かどうかを常に疑う姿勢が求められます。いくつかの切り口で得られた結果を総合的に考慮する際は、誤った結論に至らないよう注意が必要です。 新規事業の見極め方は? 新規事業テーマを探索する過程では、どのテーマを選定すべきか全体像を把握するために、異なる切り口を試してみると良いでしょう。市場規模、成長率、顧客数、深刻度、性別、年齢、居住地などでデータを分けると、それぞれ異なる見方ができるかもしれません。そして、特徴的な傾向に対しては鵜呑みにせず、一度その信ぴょう性を確認する習慣を持つことが大切です。 情報収集は何を重視? 現在は情報収集やヒアリングの段階ですが、まずは分析に必要な情報をしっかり集めることが重要です。その後、複数の切り口でデータを分け、特徴的な傾向が浮かび上がるかを確認します。ヒアリングを行う時も、聞いた内容をそのまま受け取るのではなく、別の視点や視座で見た場合どうなるかを意識して理解を深めたいと考えています。また、課題がどのように存在しているのかを探る際、ヒアリングした内容を整理することで思考を整えたいと思っています。

データ・アナリティクス入門

データで見つける!チーム改善の極意

目的は何を求める? データ分析において、まず目的を明確にすることが重要です。比較対象や基準を設けて仮説を立て、分析を進めることで、確実な意思決定につなげることができます。また個人的に、円グラフと棒グラフ(縦横)の使い分けが参考になりました。これまでは棒グラフの方向についてあまり意識していませんでしたが、今後は意識的に使い分けていきたいと考えています。 業務はどう進める? 現在、私はR&D部門で営業支援機能の一環として、顧客向けPoC作成や自社商材のクロスセル・アップセル立案を行っています。この中で、KPIの進捗率が良いチームと悪いチームが存在します。進捗率の悪いチームに対し、原因を分析してどのような支援が必要かを検討するための材料とする予定です。講義を受け、現在の業務の大半が定性的な要素に支配されていることに気づきましたが、これらも定量的なデータとして取得可能であることに今後注力していきたいと考えています。 指標はどこを確認? 具体的には、目的を「進捗率の良いチームと悪いチームの差分を捉え、悪いチームのパフォーマンス改善につなげる」と設定しました。KPI管理している指標の前段階にある要素をロジックツリーで再度分解し、KPI設定に漏れがないか確認します。この過程で、数値データを得るための手法を考え、進捗率の良いチームと悪いチームへ調査を行って数値を取得します。同じ条件のデータ同士で比較して差分を捉え、数値的な差異からどのポイントで躓いているかを特定し、支援方法の検討につなげます。

クリティカルシンキング入門

クリティカル思考で切り拓く未来

情報分析はどう進化? 論理的に情報を分析する方法を学び、情報を体系的に整理しながらその信憑性や関連性を評価する力が向上しました。これにより、正確な結論を導く基盤が整い、今後も業務の場面で役立てたいと考えています。 質問で何が深まる? また、適切な質問を行うことで、情報をさらに深掘りする力が養われました。さらに、複雑な問題に直面した際には、クリティカルシンキングを用いて効果的な解決策を見出すことができるようになりました。 日常業務の改善は? 今後の日常業務では、以下の点を意識して知識を活用していきます。まず、プロジェクトの進捗や市場動向を正確に把握するため、情報収集の際には信頼性や関連性を重視してデータを整理し、効果的な意思決定に繋げます。さらに、業務上の問題に対してはクリティカルシンキングで根本原因を特定し、創造的かつ実行可能な解決策を導入していきます。 具体的な取り組みとして、以下の習慣を実践していく予定です。 ・情報収集と分析の習慣化:   ✓ 日常業務で必要な情報を収集する際、信頼性や関連性を意識してデータを整理する   ✓ 分析した情報をもとに、定期的に報告書やプレゼンテーションを作成し、意思決定に役立てる ・フィードバックの活用と自己改善:   ✓ 定期的に上司や同僚からフィードバックを受け、自身の業務の進め方を振り返る   ✓ 改善点を明確にし、具体的な改善計画を立て、次の業務に活かす 以上の学びを活かし、今後の業務改善と効率向上に繋げていきたいと考えています。

データ・アナリティクス入門

ロジックツリーで紡ぐ成長の軌跡

原因特定で悩む? 問題解決のためには、「WHAT」「WHERE」「WHY」「HOW」の4つのステップで整理すると良いと感じました。私は特に「WHERE」の段階、つまり「原因の特定」に偏りがあったように感じますが、今後は「状況把握」や「解決策」に関しても仮説を立て、ロジックツリーを使って可視化するようにしたいと思います。一度有効だと考えた仮説に固執せず、全体を整理し直す柔軟な姿勢を大切にしていきたいです。 人事課題に挑む? 人事課題では、正解がない問題が多く、一般論や他社の傾向と自社の実情が必ずしも一致しない場合があります。そんな中で自分が立てた仮説やその結論を明確にするため、ロジックツリーを作成しながら取り組んでいくことが重要だと感じました。また、これまで属性ごとに人事データを層別分解してきたものの、変数ごとの解釈が不足していたため、状況に応じてさまざまな角度から仮説の検証を行えるように努めたいと思います。 本当の問題は? まずは、目の前のデータに頼るのではなく、何が本当の問題なのかを明確にするための仮説を立て、その仮説をロジックツリーのような形で整理していきます。現状のデータだけでなく、どんなデータがあればより適切な比較ができるかを考え、必要であればデータを収集できる体制を整えることにも注力していきたいです。 検証の進め方は? 最後に、実際にデータを使って仮説を検証する際には、ログを残すことや、時間や状況の違いを比較することを意識しながら、着実に分析を進めていく所存です。

「意識 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right