データ・アナリティクス入門

仮説が導く多角的学びの扉

仮説はどう考える? 仮説を考える際は、決め打ちにせずに複数の視点から仮説を立てることが大切です。仮説同士に網羅性を持たせるため、異なる切り口で検討を行い、検証時には何を比較基準にするかを意識的に選ぶようにしましょう。 データはどう集める? データを収集する際には、対象者が意味のある情報源であるか、またどのような方法(アンケート、口頭など)で情報を得るのかを考慮してください。比較対象となるデータを収集することを忘れず、都合の良い情報だけでなく、反論となる情報も取り入れて検証するように意識します。 仮説はどう分類? 仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大きく分類され、時間軸(過去・未来・将来)によってその中身は変わっていきます。 過去データで発見? たとえば、過去に掲載していた販売サイトのアクセス数やコンバージョン率を再確認することで、当時気づかなかった新たな発見が得られるかもしれません。担当していなかった時期のデータでも、改めて見返すことで仮説を生み出す練習ができます。また、メールマガジンのクリック率や流入ページ、ページビュー数なども注目すべき指標です。 多角的検討は必要? これまで、思いついた仮説に合致する情報を優先的に探していたかもしれませんが、仮説が決め打ちにならないよう、複数の視点から網羅的に検討する意識が求められます。What、Where、Why、Howの各要素に落とし込んだうえで、プロセス通りに漏れなく検討していくことを心がけましょう。

データ・アナリティクス入門

数字が語る学びの物語

データ全体像は? データ比較や数値化、数字に集約して捉える方法、さらには視覚的および数式を通じて関連性を把握する手法について学び、大変参考になりました。これにより、データの全体像を把握しやすくなると感じています。 平均の違いは? 目的に応じて、単純平均だけでなく、加重平均、幾何平均、そしてはずれ値に対応する中央値など、さまざまな平均値の使い分けが有用であると再認識しました。数字を分析する際、データの中心値と散らばりを考えるアプローチは非常に重要です。 標準偏差はどう? 特に、これまであまり意識してこなかったデータのばらつき、すなわち標準偏差の理解については、自己学習が必要だと思いました。今回の学習を通して、データ分析においてばらつきの考慮が結果に与える影響の大きさに気付きました。 実践はどう進む? 今後は、学んだ知識を生かし、エクセルを活用してグラフ化するなど、実践的なアプローチに取り組んでいきます。また、どのデータを分析するかはまだ模索中ですが、さまざまな場面で応用できるよう、引き続き自己研鑽を積んでいく予定です。 難解概念の壁は? 一方で、「平方根」、「標準偏差」、および「正規分布と2SD」といった概念は難解に感じたため、これらの理解を深めるためにさらなる学習が必要だと感じました。また、過去に業務で使った経験がある「幾何平均」についても、当時はあまり考えずに対応していたため、Raw dataを見直しながら基礎から再確認していきたいと考えています。

クリティカルシンキング入門

グラフデザインで変わる!伝わる資料作り

グラフ選びは正解? グラフの見せ方において、題名や単位などの細かい部分を記載することで、相手にとって見やすくなり、目的に応じたグラフ選びが必要であることが分かりました。また、文字の色やフォントによって印象が大きく変化するので、TPOや内容に合わせたデザインにすることで、相手への読みやすさや伝わりやすさが向上すると感じました。スライドでは、さまざまなグラフを使うよりも、シンプルに一つにまとめる方が、読み手の注意を集中させやすいことが理解できました。 カテゴリ毎の工夫は? 売上などをまとめる際には、カテゴリごとにグラフを活用したいです。データの時系列、経緯、要素がどれに適しているかは、改善したい目的によって変わると思うので、初めはさまざまなグラフを試して、最適なものを見つけたいです。スライドを作成する際は、目的に応じてフォントや色を調整し、強調したい部分が派手になりすぎないよう配慮したいです。 分析で何を掴む? また、売上データのどの部分を確認し、何を分析して改善するべきかを、グラフを使って言葉で説明できるようにしたいです。そのためには、自分自身でデータを分析し、必要な情報を精査していきたいと思います。スライド作成時には、常に相手の視点に立ち、初めて見る人でも分かるように、フォントや文字、グラフを選定していきたいです。特に、どのような印象を与えたいのか、どのような意識を持ってほしいのかを考え、人の心理に働きかけられるように試行錯誤しながら練習していきたいと思います。

データ・アナリティクス入門

MECE思考で見える未来

情報で迷う理由は? データ分析の際、目についた情報に振り回され、時間がかかってしまうことや、都合の良い情報ばかりに頼って決め打ちになってしまう問題を感じています。そこで、MECEの考え方を取り入れることにしました。 MECEの切り口は? MECEには、全体を複数の部分に分ける層別分解と、全体を構成する変数に分ける変数分解という2つのアプローチがあります。たとえば、層別分解では年齢、季節、販売チャネルなどで分析し、変数分解では売上=客単価×客数や売上=商品単価×販売数のように捉えることができます。 分解できないのは? また、MECEに分解できない例として、モレなしでダブリがある、モレありでダブリがない、モレありでダブリもある場合が挙げられます。今後は、売上分析や業界、顧客分析、さらには業務の課題解決にもこの考え方を積極的に活用していきたいと考えています。 データ加工のポイントは? 現在、売上分析データを加工中であり、来週からはMECEの視点を取り入れたデータ加工を進める予定です。加えて、ロジックツリーを書き出すことで思考のスピードアップを図りながら、業務の課題解決に向けた取り組みも強化していきます。 情報取得の見直しは? 以前、情報の取得に時間がかかることや、都合の良い情報だけを集めて決め打ちしてしまう点に気がつきました。そのため、現在作成中のデータをもう一度フラットに俯瞰し、MECEを意識したフレームワークを使って再検討に努めています。

クリティカルシンキング入門

一読必見!グラフで伝える魅せ方術

情報の見せ方は? 相手に分かりやすく情報を伝えるための視覚化ポイントとして、グラフの使い分けが重要であると学びました。時間軸での変化を示すには縦棒グラフや折れ線グラフを、要素の違いを際立たせるには横棒グラフを、また内訳を表す場合には帯グラフを用いるといった使い分けが有効です。さらに、フォントや色の選択が印象に大きく影響するため、デザイン面にも留意する必要があると感じました。 スライドのコツは? また、スライド作りにおいては、メッセージとの整合性を意識し、相手に情報を探させることなく、流れに沿って丁寧に示す工夫が求められます。これにより、相手に直感的に内容が伝わる構成が実現できると実感しました。 良文の条件は? 一方、ビジネスライティングでは、良い文章の条件として、目的を明確にし、読み手の立場に立った内容作りが大切です。現代は情報量が多いため、最後まで読んでもらえるようなアイキャッチや文章の硬軟の調整、読みやすい体裁に配慮することが求められます。メールや社内外の資料作りでも、これらの視点を意識して文章を作成していきたいと考えています。 計画の整理方法は? さらに、年度末のレビューや来年度の行動計画の資料作成においては、今年度のデータを俯瞰し、問題の抽出時にはピラミッドストラクチャーで思考を整理する方法が有用でした。スライドでは、メッセージとの整合性に加え、相手が余計な情報を探さなくても理解できるように、情報を順序立てて示す点に特に注意して作成しています。

クリティカルシンキング入門

データ分析で見える新たな可能性

データ分解の視点とは? 事象をより深く理解するためには、分解が重要です。分解の際は、Who、When、Howなどの視点から試行錯誤が必要です。一つの切り口に固執せず、様々な切り口から数字を確認することが求められます。このとき、切り口は「もれなくダブりなく」を意識しながら進めましょう。 直感に頼らずデータ確認 切り口が見つかったら、それに基づいてデータを直感的に分析します。しかし、直感的な推測は一度疑い、データで確認することが大切です。結果が期待外れであっても、それは失敗ではなく、次のステップへの前進です。 新しい視点で見る方法は? ウェブデータの分析でも、新しい切り口での分析が効果的です。切り口は自動的に決めるのではなく、MECEを意識して分解していきます。ある切り口が有効であっても、他にないかを考え、複数の切り口でデータを分析します。 チームで進める業務の確認 業務においても同様に、チーム全体での作業がもれなくダブりなく行われているか確認します。また、責任範囲を異なる切り口で考えてみると良いです。 マンスリーレポートにどう反映? ウェブデータの分析に関しては、全体を定義した上で新しい切り口をMECEを意識して今週から来週の間に実施し、その結果をマンスリーレポートに反映します。この過程では、全体を把握した上でチームメンバーと議論し、より良い切り口を探してみましょう。 なお、チームの業務に関しては、まずは思考実験を行うことから始めてみてください。

クリティカルシンキング入門

学びのこだわり、伝わる工夫

グラフ作成の基本は? グラフ作成時には、まずタイトル、単位、軸の原点を0から始めるといった基本事項を意識する必要があります。時間軸のデータは慣例通り縦のグラフを用い、X軸を基準とした折れ線グラフで傾向や変化、連続性が見えてくるように設定します。また、「何を伝えたいか」という目的に応じてグラフの形式を選ぶことが求められます。普段の業務でグラフを作る機会は少ないかもしれませんが、数字だけでなくTIPを意識して正しい表現方法を取り入れることが大切です。 フォント選びのポイントは? 文字表現については、注目してもらいたい点を過度に強調しすぎず、フォントや色の選択により印象を工夫することがポイントです。さらに、アイコンを補助的に用いることで理解が促進される効果もあります。特にパワーポイントのスライドを作成する際には、フォントの種類や色、アイコンの使い方に細部までこだわると良い印象を与えられるでしょう。 スライド作成の秘訣は? スライド作成時は、情報が出てくる順番に合わせて図表を配置し、事実とともにプレゼンのターゲットに合わせた「何を伝えたいか」を明確にする表現が重要です。帯グラフの幅から比較しやすい特徴を活かしたり、折れ線グラフと棒グラフを一つにまとめる工夫、または矢印などで強調する方法も効果的です。TIPを意識して丁寧に作成することで、見栄えの良いスライドが完成します。 これらのポイントを踏まえ、日々の業務やプレゼンテーションで説得力のある資料作りに役立てたいと思います。

データ・アナリティクス入門

「データ分析でつかんだ達成感」

問題解決のアプローチは? 問題に対応する際には、まず何を明らかにしたいのかをしっかりと理解することが重要です。結論のイメージを持ちながら取り組むことで、ストーリーが明確になります。 データ分析の重要な視点とは? データを分析する際には、実数と比率の両方を確認しましょう。これは、母数の違いによって見え方が大きく変わるためです。また、効果的なグラフを用いることで、分析結果を直感的に理解しやすくすることができます。事象に応じて最適なグラフの表現方法を選びましょう。 考えを整理するコツは? 課題に取り掛かる際には、問題点を整理しましょう。考えたことや思い浮かんだことをメモし、それをグループ化して整理します。必要に応じて一旦立ち止まり、考えを再度整理することも大切です。優先順位を決め、効率的に進めていきましょう。 Copilotを活用する方法とは? また、Copilotと相談しながら思考を整理するのも有効です。特に難しい問題に直面した際には、飛躍した考えやアイデアを得る手助けになります。 クリティカルシンキングをどう磨く? 比較資料についても、実践を重ねながらベストな可視化方法を見つけていくことが求められます。クリティカルシンキングを意識し、しっかりと身につけることが成功への鍵となります。 AIを使って新しい視点を得るには? AIを活用することも一つの手段です。AIで壁打ちをすることで新しい視点を得たり、考えの整理が進んだりするでしょう。

クリティカルシンキング入門

数字で導く!分析の新たな視点

データ加工で全体像を把握するには? データを加工する際には、与えられた情報をそのまま受け取るのではなく、全体像を把握するために必要な項目を追加することが重要です。単に生の数値を羅列するのではなく、表として整理することで、様々な気づきを得ることができます。 グラフ化で得られる洞察とは? また、グラフ化する際には、数値をどのように区切るかが得られる解釈に大きな影響を与えます。どのように分ければ、より良い気づきを得られるかを意識しながら数字を整理することが求められます。グラフ化はあくまで手段であり、そこから得られる洞察を基に仮説を立て、実際の行動に結びつけて改善を図ることが目的です。 傾向が見つからないときの価値は? さらに、数字を分解してグラフ化した結果、傾向が見つからない場合もありますが、それは失敗ではありません。むしろ、傾向がないことが判明したこと自体に価値があります。 私はソフトウェアエンジニアなので、数字を分析する作業はあまり多くありません。しかし、例えばチームのミーティング時間を削減する際、いつ誰がどれだけの時間をミーティングに費やしているのかを分析するために、このような方法を活用できると考えました。 分析作業の目的をどう意識する? 分析作業に取り組む際、つい情報をまとめることが目的になりがちです。しかし、「何のための分析作業なのか?」、「仮説を得るためにはどのようにまとめるべきか?」といったことを常に考えながら、分析作業を進めたいと思います。

データ・アナリティクス入門

仮説思考で見つける学びの道

学びの目的は何? ライブ授業を受けて、これまでの学びを振り返ることができましたが、なお十分に理解しきれていない部分もあり、実際に活用するイメージがまだ明確ではないと感じました。特に、データ分析に着手する前に「目的」や「仮説」が重要であるという基本原則をしっかりと自分の中に落とし込み、何のために分析を行うのかを意識する必要があると思っています。 仮説検証の流れは? 分析のプロセスは、まず仮説を立て、それを検証するためにデータの収集や加工を行い、そこから新たな発見へと結びつける流れであることを再確認しました。データそのものが分析の起点になるのではなく、あくまで仮説を検証・裏付けるためのツールとして位置づけ、目的と手段が逆転しないように意識することが大切です。 仮説思考で解決? また、業務上で大量のデータ分析に直接接する機会がなくても、さまざまな場面で問題解決が求められることは事実です。こうした状況においては、仮説思考に基づいたアプローチで検証を進めることで、課題解決に向かう思考プロセスを常に意識する必要があると感じました。 思考プロセスを活かす? さらに、データアナリティクスの思考プロセスを基本に据え、テクニカルな側面に偏ることなく、仕事や日常の課題に取り組む際にもこのプロセスを意識することが重要だと思います。直接的な事例に触れる機会が少なくても、まずは解決すべき課題に向き合う際に、今回学んだ思考のプロセスを活かして取り組む姿勢が大切だと感じています。

クリティカルシンキング入門

イシューを明確化して成果を最大化する技法

課題発見のための具体的手法は? 本質的な課題を発見するためには、対象を分解し問題点を明らかにし、その対策を検討することが重要です。その際、グラフなどを使用して問題点を的確にあぶり出すことが効果的です。手当たり次第に検討するのではなく、焦点を絞ることが求められます。 イシューの重要性を理解 イシューを明らかにし、常に意識することも重要です。打合せなどでは、まずイシューの共通認識を持つことが必要です。これは基本的なことですが、実践するのは難しいです。打合せの目的(イシュー)を共通認識として持つことが不可欠です。 業務を進める上でも、まず自分の中でイシューを明確にし、それを持ち続けることが大切です。必要に応じてイシューを修正する際も、その目的を明確に意識し続けます。 他社データの活用法とは? また、同業他社や好きな会社のデータを見て分析し、自分の仕事に活用することができます。考えるための題材は自分の仕事以外にもたくさんあり、例えば同業他社の有価証券報告書などからも情報を得ることができます。 打合せでは、その目的(イシュー)を最初にアジェンダに記載し、全員が共通の認識を持てるよう確認することが重要です。また、新聞や書籍などのグラフに注目し、その場合に適したグラフを選ぶ視点を持つことも有益です。 さらに、新聞記事や自分の業務を進める上で、常に目的やイシューを意識しながらメモを取ることが有効です。これにより、意識的に課題や解決策に集中することができます。

クリティカルシンキング入門

問いの力で未来を切り拓く

講座学びはどう活かす? 今までの講座で学んできたことが、今回の講座の軸になると感じました。他の講座では、切り口の考え方、データの読み解き方、そして言葉や資料での伝え方を学んできました。しかし、これらを組み合わせるだけでは、でき上がった答えが素晴らしいものであっても、間違いになりかねないと思いました。重要なのは、現在の状況を踏まえたうえで、どのような答えを出したいかを「具体的な問い」の形で先に設定することです。これにより、無関係な議論を避け、方向性の合った議論や分析を行うことができます。 問いの質を高めるには? この考え方は、新商品やリニューアルの方向性について議論する際に非常に役立ちます。以前は「●●はどうか」という程度の問いしか出せませんでしたが、今後はより本質的で具体的な問いに落とし込めるようにしたいと考えています。「この状況において考えるべきこと」を常に意識し、それを自分で考え、周りにも示していけるようになりたいです。 実践ステップはどうする? 業務に対しては、次の順序で実施していきます。まず、議論を始める前に「問い」を考えます。次に、皆で「問い」を出し合い、どこに狙いを定めて議論をするかを決めます。そして、解決したいこと、現在の状況、「問い」が繋がっているか、ズレていないかを確認します。「問い」に合った議論を行い、答えを導き出します。その後、「問いに合っているか」「解決策になっているか」を確認してから実行に移す、という流れを意識していきたいです。

「意識 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right