データ・アナリティクス入門

細分化で見つけた改善のカギ

A/Bテストで何を発見? A/Bテストを活用することで、比較的簡便に効果的な解決策を見いだし、継続的な改善へとつなげられることを学びました。これからは、日々の施策検討において、課題を細かい要素に分解し、それぞれについて最適な解決策を追求していくプロセスを取り入れていきたいと考えています。 テスト計画は何が肝心? プロモーションのA/Bテスト計画を立てる際は、まず目的と仮説をはっきりとさせることが大切です。テストは1要素ずつ行い、同一期間内に実施することで、外部環境の影響を受けにくくなります。また、問題の原因を探る際には、プロセスをできる限り詳細に分解し、ボトルネックとなる部分を見極めることが求められます。 解決策評価はどうする? さらに、解決策を検討する場合は、何を基準に評価するかという判断基準を明確にした上で、各案を慎重に評価することが重要です。

データ・アナリティクス入門

仮説×分析!新たな解決のヒント

仮説検証はどう進む? 問題解決においては、複数の仮説を立て、その仮説を迅速に検証していくプロセスが重要です。特に、3Cや4Pといった既存のフレームワークを活用することで、仮説の立案は効率化し、スピードが向上します。 分析方法は何が変わる? これまで、webサイトの売上やアクセス分析においては、場当たり的に変動要因を探っていた面がありました。しかし、3Cや4Pなどの枠組みを取り入れることで、従来気づかなかった切り口や新しい視点からの仮説を導き出すことが可能になると実感しました。 選択肢は広がる? また、3Pや4Cをはじめとする各種フレームワークを再度学ぶことで、仮説の立案における選択肢が広がります。どの状況にどのフレームワークが適しているのかを理解し、これらを積極的にwebサイト分析に活用することが、より効果的な問題解決につながると考えます。

クリティカルシンキング入門

ナノ単科で輝く未来の自分

スライドの工夫はどう? スライドは、情報をただ羅列するのではなく、伝えたいメッセージを効果的に届けるための工夫が求められます。例えば、タイトルの色やフォント、ハイライト、そしてグラフの表現方法など、さまざまな要素に注意を払いながら作成することが必要です。また、読み手に負担をかけない表現を心がけることで、メッセージが正しく伝わるスライド作りが実現できます。 目的意識は本当にどう? 上司への報告や顧客への提案といった場面で、スライドは多岐にわたる活用が可能です。ただし、そもそもスライドにする必要があるのかという目的意識を持つことも大切です。月次や週次単位でスライドを作成する際は、一度自分で作成した資料を見直す習慣を持ち、読み手にとって理解しやすいかどうかを常に意識することが求められます。そのため、フィードバックを積極的に受け入れ、改善を重ねる姿勢も重要です。

戦略思考入門

経済性の驚きと実践術

経済性の意味は何? 「規模の経済性」については、事象としては知っていたものの、用語としては初めて学んだため大変新鮮でした。また、「範囲の経済性」に関しては、適用する順序を誤ると、単に手薄でコストが高い状態を招く恐れがあるため、十分な注意が必要だと思いました。 活用されない理由は? さらに、場合によってはこれらの経済性が十分に活かされないケースが存在することも初めて知りました。フレームワークに依存せず、柔軟な対応が求められると感じています。 施策のタイミングは? 「ネットワークの経済性」は、顧客が広告施策を展開する際、施策のタイミングや訴求内容の決定において大いに役立つと考えられます。 育成法はどうする? また、「習熟効果」は、自社組織の運用面で、どのようなメンバーをどのように育成し、案件にあてるかという点で活用できると感じました。

アカウンティング入門

PL活用で利益を生む戦略を再考する

PLで見えるコストと利益は? PLを通じて、どの部分にコストがかかり、どの部分で利益が発生しているのかを理解することができました。それぞれの店舗のコンセプトに応じて、どこに重点を置いて計画を立て、利益を生むためにはどのような売上計画を立てればよいかを再認識しました。 自部署のコスト改善に向けて 自部署では、PLを活用してどの部門にコストがかかっているのか、改善の余地があるのはどこかを分析し、目標を設定して効率的な戦略を立てたいと考えます。また、なぜコストがかかるのかを過去のPLと比較して分析することで、PLをより有効に活用できるようになりたいと思います。 設備投資計画のリスク管理 私の担当する設備投資計画では、PLを活用して設備導入時の利益発生箇所やコスト発生要因を明確にし、投資リスクを考慮しつつ、効果的な設備投資を実施できるようにしたいです。

データ・アナリティクス入門

業務に光る、学びのヒント

無意識の業務は何? 学習を進める中で、普段業務で無意識に行っているプロセスに正式な名称があることに気づかされました。例えば、説明時に「ロジックツリーが…」と話すと説得力が増すため、今後はこの知識をさらに活用していきたいと思います。 効果的な分析って何? また、上期の離職者分析では、残業時間のデータを検証し、残業時間と離職の因果関係がないことを確認しました。今回の課題の最後で何を分析すれば効果があるかを考えたように、実務においても常に効果的な分析手法を模索していく姿勢を持ちたいと考えています。今後も学びを業務に積極的に取り入れていく所存です。 課題を深めるには? 一方で、クラスの課題として取り組んだ分析内容については、詳細を具体化することができませんでした。今後、どのようにドリルダウンして効果的に具現化できるか、皆さんと議論できればと思います。

データ・アナリティクス入門

受講生が実感する学びの変革

目標はどう意味づけ? 目標設定は、データ分析のみならず、学び全般にとっても非常に重要だと再認識しました。受講前に描いていた理想像よりも、学びを終えた今の自分は実践できることが増え、単なる分析のプロから、ビジネス現場で分析手法を効果的に活用するプロへと成長できたと感じます。 活かし方はどうして? この学びは、日常のあらゆる業務に活かしていきたいと思います。データ分析の知見が、問題解決や新たな施策の立案に大いに役立つと理解したため、業務全体でその手法を意識していくつもりです。 従来手法は適切? また、現在の担当業務を見直すことで、従来の方法が本当に適切であったのか、見逃している課題はなかったのかを改めて点検していこうと考えています。その結果を踏まえ、今回の受講で得た実体験の知見を活かし、今後必要となる知識やスキルの習得にも取り組んでいきたいです。

リーダーシップ・キャリアビジョン入門

振り返りで見つける自分の宝

振り返りの意義は? 定期的に振り返る機会を持つことは、忙しい中でも非常に重要です。反省点だけではなく、うまくいった点にも目を向けることで、自己成長を促す効果が高まります。 面談で何を見つける? 業績評価面談では、過去半年間に具体的にどのような行動を取ったのか、その行動を選んだ理由や当時の状況の感じ方を尋ねることで、単なる目標達成の確認にとどまらず、個々人のモチベーションの源泉や興味関心を理解する場として活用できます。 フィードバックはどうかな? また、効果的なフィードバックを行うには、日頃から具体的な事実に基づき観察することが大切です。気づいた点を記録し、忘れないようにすることで、正確かつ有意義なフィードバックが可能となります。さらに、設定された目標が本当にメンバーのモチベーション向上につながっているかを確認することも忘れてはなりません。

戦略思考入門

本質を掴む経営戦略のコツ

定石をどう捉える? ビジネスの定石を正しく理解し活用することの大切さが印象に残りました。漠然とした知識だけで判断してしまわず、本質をしっかりと捉える姿勢が必要だと感じています。 適切な打ち手は? また、単に総生産数を増やすだけでは規模の経済が働くかどうかは不明であり、自社の状況に合わせた適切な打ち手を検討する必要があるという点も重要だと思いました。 大数字の罠は? 技術開発提案書を作成する際、年間や生涯の生産数といった大きな数字を用いていましたが、規模の不経済が生じていないか、また工場の生産状況を踏まえた上で、より効果的な施策を考える必要性を強く感じます。 情報の真偽は? さらに、範囲の経済性などの要素も十分に考慮し、単なる定石に頼るのではなく、部分的な情報だけに流されずに事実の本質を見極めることが求められていると実感しました。

クリティカルシンキング入門

分解力で誤解を防ぎ、データ活用スキルを伸ばす

分解法は正しい? 分解することで原因の特定が容易になることを学びました。しかし、分解の過程では、常にその手法が正しいか自問することが重要です。そうしないと、分解したデータに誤った解釈をしてしまい、思い込みによる原因の特定につながる可能性があります。 売上の分析はどう? 売上を算出する際には、その目的を明確にしたうえで、効果的な視点からアプローチすることが大切です。これを意識せずに進めると、成果に結びつかないことがあると学びました。したがって、意識的に効果的な算出を心がけます。 報告の伝わり方は? また、売上算出にはデータ抽出の明確な目的を持ち、その目的に沿った効果的な切り分けを実施します。さらに、その算出結果を上司に確認してもらい、伝えたい内容が明確に伝わっているかを検証します。わかりにくい点があれば、その都度改善を行っていきます。

データ・アナリティクス入門

小さな検証がもたらす大発見

A/Bテストはどう活かす? A/Bテストの手法を学ぶ中で、基準を揃えた上で複数のパターンを試し、比較検証することの重要性を実感しました。また、A/Bテストに限らず、比較を行う際には条件を同一にすることが必要であると感じています。 仮説検証はどう進める? 仮説検証については、小さなサイクルを繰り返すことが効果的だと考えています。月次実績を追いながら、仮説検証を実施し、特に割合の比較を日々の業務に取り入れることで、より正確な分析が可能になると認識しています。 UI/UXはどう評価する? さらに、アプリケーション開発に携わる立場から、UI/UXの検討においてもA/Bテストの手法を積極的に活用していきたいと思います。現業務で実際に数値をもとに比較を行っている経験を踏まえ、今後も引き続きこのアプローチを継続し、業務改善に生かしていく所存です。

データ・アナリティクス入門

数字で解く最適ログイン戦略

視覚化はなぜ大事? 数字に集約し可視化することの重要性を改めて認識しました。代表値と分布に注目し、平均値や標準偏差の概念を意識することはもちろん、場合によっては単純平均ではなく適切な重みづけを行う必要があることも理解しました。 どうユーザー呼び込む? ログイン率向上のためには、プッシュ通知を活用したユーザー誘導施策が有効だと考えています。具体的には、アプリのログイン時間帯とユーザーの年代を比較し、どの時間帯にプッシュ通知を設定するのが適切かを検討していきたいと思います。 データは見えていますか? まずは、アナリティクスで必要なデータが可視化できているか、ログイン時間帯と紐づくユーザーの年代ごとのデータが抽出できるかを確認します。その上で、データの分散状況を把握し、最も効果が高いと思われる時間帯を優先して施策の検討を進める方針です。

「活用 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right