データ・アナリティクス入門

議論が生む新たな発見

多角的視点で何が見えた? 学んだ内容を振り返り、複数の視点から議論することで、これまで見落としていた点や新たな切り口、さまざまなアプローチ方法に多くの気づきを得ることができました。今後は、このような環境を社内にも広げ、各自が自走できる体制を整えていきたいと考えています。 上司の依頼はどう活かす? 日常業務では上司からデータ分析の依頼を受けることが多く、上司の興味関心と実際の事業課題を明確に切り分け、目的意識を持った意味ある分析が事業に貢献できるような環境作りが求められると実感しました。また、データ収集がそれ自体の目的にならないよう、適切なデータの収集と活用に努める必要があります。 実行策にどうつなげる? このため、まずはビジネスプロセスマップやビジネスモデルキャンパスを作成して全体像を把握します。次に、関係者間で課題の所在を共通認識として持ち、データ分析を通じて課題の発見や優先順位、重要度を明確にします。最後に、分析結果に基づき実行策を評価することで、より効果的な改善策を進められると考えています。

クリティカルシンキング入門

MECEで業務効率アップ!育休復帰計画

MECEの種類って何? MECEの種類には、大きく分けて層別分解、変数分解、プロセス分解の3種類があり、それぞれの分解方法を使い分けることが重要だと感じました。これらの方法を試すことで、自身の分析に最も適した分解手法を見つけることができると学びました。 クラウド相談で何が分かる? 私は、自分の業務でクラウド利用相談においてこの手法を活用できるのではないかと考えています。利用相談の内容を分解することで、利用者が抱える本質的な問題を分析する際に有効だと感じました。特にプロセス分解を用いることで、どのプロセスに問題があるのかを特定し、迅速に問題解決に結びつけることができると考えています。 復帰後の活用は? 来月から育児休暇からの復帰を予定しており、クラウド利用相談でこの手法を活用したいと計画しています。相談内容をプロセス分解し、問題の本質を把握できるように努めます。まずは相談者が何を望んでいるのか全体像を把握し、その中でどこに問題が発生しているのかを分解して特定し、より効果的に対処したいと考えています。

クリティカルシンキング入門

視覚的要素で引き込むスライド作成のコツ

スライドの表現はどう? 視覚的な要素を意識したスライド作成では、色やフォントが持つメッセージ性を効果的に活用することが重要です。色は多用せず、引き算の考え方でデザインをまとめると良いでしょう。文章やスライドの内容は、一つのメッセージに焦点を当て、読み手に合わせて適宜変更することを心がけます。 テンプレートはどう? また、パワーポイントの作成時には、いきなり文章を書き出すのではなく、会社のテンプレートがある場合にはそれを利用するのが賢明です。他の人が後で編集しやすいように、資料を作成する際にはコピーされることを前提としておく必要があります。スペースキーを使用して改行をしないように注意しましょう。 時間管理は万全? パワーポイントの作成過程では、いきなり構成し始めるのではなく、まず文章から始めることをお勧めします。作成時には集中して一気に仕上げられるように、まとまった時間を確保することが効果的です。作業に専念するために、Teamsの通知をオフにし、タイマーを使って時間を管理すると良いでしょう。

クリティカルシンキング入門

視覚×メッセージの魔法

視覚化はどう活かす? 今週は、視覚化の重要性について学びました。特に、スライド作成の際に、伝えたい内容を整理するとともに、読み手の視点に立って文章を構成することが大切だと感じました。どのようなメッセージが必要で、何を伝えたいのか、またグラフとメッセージが一致しているかを常に意識する必要があると理解しました。 グラフと文章の調和は? また、メッセージを効果的に伝える方法として、グラフの活用や文章の見た目に気を配ることも学びました。プレゼンテーションにおいては、ストーリーラインを意識し、グラフとメッセージの一致を確認することで、受け手にしっかりと内容が伝わる工夫ができると感じました。 メールで魅せる工夫は? さらに、メール作成についても、単なる文章の羅列ではなく、目を引く工夫を施すことで、読み手に対して効果的に情報を伝えることが可能だということを実感しました。少々手間がかかるかもしれませんが、凝ったメールを作ることが、結果として読みやすい文章につながると今後も意識していきたいと思います。

データ・アナリティクス入門

仮説を実践!A/Bテスト現場記

目的は明確ですか? まず、A/Bテストを行う際は、目的と仮説を明確にすることが大切です。検証項目をしっかりと設定した上で、テスト対象を1つの要素に絞り、無駄な混乱を避けます。 期間は統一ですか? また、A/Bテストは必ず同じ期間内で同時に実施する必要があります。異なる期間で行ってしまうと、テスト以外の環境要因が影響し、正確な検証が困難になるためです。 仮説の幅広げる工夫は? キャンペーンメールの場合も、基本として要素を一つに絞り、同一期間での同時実施を心がけています。しかし、仮説を明確にするのが難しく、有意差が出にくい状況もあるため、フレームワークを活用して仮説の幅を広げる工夫を行っています。 最適仮説は何ですか? その上で、自分が実施したいキャンペーンにおいては、コンバージョン獲得のため検証すべき仮説を、フレームワークを用いて整理し書き出します。そして、どの仮説が最も効果的なのかを考慮しながらキャンペーンを実行し、結果をもとに検証と改善のサイクルを繰り返すことで成果を追求しています。

データ・アナリティクス入門

数字に秘めた学びのヒント

数字選びはどうすべき? 代表値やばらつきを考慮し、適切な数字を選ぶ重要性について学びました。データには多様な側面があり、集計して表にまとめる際には、その背景となる意味を正しく理解する必要があります。 データの組み合わせは? また、他者のデータを確認する際も、各数字がどのような要素で構成されているかを意識することが大切だと感じました。たとえば、会議室の使用率や社員の出社率といった具体的な数値をデータベースでチェックし、分布図を用いて関連性を見出そうと試みた経験があります。こうすることで、新たな視点から情報を捉えることができました。 情報整理のコツは? さらに、過去の購買履歴をグラフ化するなど、複数のアプローチでデータに向き合うことで、細かい点まで確認し、本当に必要な情報を抽出するプロセスが重要だと再認識しました。まずは細かいデータを収集し、グラフ化やピボットテーブルを活用して全体像を把握し、さらにまとめられるデータは一つの図に統合することで、情報を整理しやすくすることが効果的だと感じています。

データ・アナリティクス入門

新しい方法論で業績アップを狙う!

分析の重要性とは? 今週の学習で重視したポイントは、分析は比較であるということです。また、「Apple to Apple」を意識し、適切な比較要素を抽出することも重要です。過去の方法が最善だったのか、新たな方法論があるのか、今後の講義を通じてさらに学びを得たいと考えています。 業績分析をどう活用するか? 私は、自部署の業績分析や戦略策定にこの学びを活用しようと考えています。新規案件の獲得状況や既存案件のプロジェクト収支など、必要な情報を精査し、分析を進めたいと思っています。この分析を基に、新規提案活動、適切なリソースの配置、社員教育など、部門運営の戦略立案に役立てることを目指しています。 情報収集の方法は? はじめに、営業部からのパイプライン情報の共有、リソース計画、メンバーの稼働率、プロジェクトステータス、メンバーのスキルマップなど、各方面からの情報収集を徹底することが必要です。これらの情報を活用し、現状の組織における問題点を把握し、効果的な戦略策定につながるよう努めたいと考えています。

データ・アナリティクス入門

データ解析の「やったつもり」を脱却する方法

直感的な解析で本当に大丈夫? 本講座の学習と総合演習を通じて、"直感的なデータ解析はNG"であることを強く感じました。合計や平均などの一般的な解析手法を反射的に実施してしまう癖があり、それらを実施しただけで"やったつもり"になってしまう場面があることを再認識しました。 ビジネスに繋がる数字とは? 業務において求められているのは、誰でも分かる当たり前の数字を出すことではなく、ビジネス上の優位性を生む数字です。例えば、競合他社より売り上げを伸ばす、納期や費用を圧縮するといった具体的な目標に直結する数字が求められます。今後は、どのデータをどう活用すればこうした差を生む数字を導き出せるかを整理し、解析業務の棚卸を行いたいと考えています。 データの棚卸しで見直すべき点 具体的には、定型業務の棚卸を実施し、これまで報告してきたデータの有効性を見直す予定です。これまで蓄積してきたデータが、競争上の優位性を生む数字となっているかを評価し、有効であれば継続し、効果がなければ見直しを行い、代替案を提案します。

データ・アナリティクス入門

エビデンスが示す戦略の新境地

A/Bテストとは? A/Bテストは、データ分析における「比較」の重要性を実感させる手法です。ランダムにサンプルを抽出することで、一定数の調査データから精度の高い結果が得られる点や、どの工程でボトルネックが発生しているか割合を算出できる点に実践的な可能性を感じました。 戦略の判断基準は? 勤務先のイメージ戦略について、2つの側面のうちどちらを強調すべきかは感覚的には把握しているものの、エビデンスが不足しているため不安な面もあります。A/Bテストを活用すれば、どちらがより効果的か明確に判断できるのではという期待から、早速ターゲティングサービスを提供する業者に同様のサービスがあるか確認する予定です。ただし、単純にAかBのどちらかだけではなく、両方を組み合わせた戦略が効果を高める可能性もあると考え、慎重な実施が必要だと感じています。そこでまずは広告代理店に相談し、業界の広報戦略が十分に実践されていない現状を踏まえた実証実験として、自社と共同で取り組める可能性を探るため、休み明けに連絡するつもりです。

データ・アナリティクス入門

新たな指標で描くデータの未来

どうしてデータ加工が必要? これまで、データ分析では単純平均や標準偏差、棒グラフ、散布図など、一般的な方法を用いてきました。しかし、集めたデータを適切に加工しなければ、想定していた答えや正確な結果を得るのは難しいと学びました。今後は、必要に応じて加重平均や中央値などをより効果的に活用していきたいと考えています。 どの指標が本当に有効? また、単純平均や標準偏差だけに頼ると、データの見え方が一面的になりかねません。そのため、加重平均や幾何平均、中央値といった指標を取り入れ、どの指標がデータを最も適切に表しているのかを検証しながら分析を進めたいと思います。これまでとは異なる視点からデータが見えることを期待しています。 なぜ仮説検証が重要? 特に、私の業務は問題解決のための分析とあるべき姿の考察の両面に関わるため、その時々で適切な仮説を立て、データの表し方を工夫することが求められます。状況に応じた分析手法を積極的に取り入れることで、より正確なデータ分析に繋げていきたいと思います。

戦略思考入門

定石活用で築くものづくりの未来

事例から何が見える? トイファクトリーの事例を通して、自社ビジネスが置かれている状況や特徴を正しく捉え、定石やメカニズムを活用する重要性を学びました。今回のケースでは、自社の需給特性―特に繁忙期―を考慮しながら規模の経済性に焦点を当てることが求められます。また、先人たちの知見が蓄積された理論も、自社の事業文脈に合わせて活用していく意向です。 規模経済は活用できる? さらに、規模の経済性の考え方は、現業務にも十分に応用できる要素であると感じています。各部署や現場で既に推進されている取り組みを、事業全体に横断的に広げることで、ものづくりに関する理念や思想の定着をより一層促進できると考えます。 中期プランで何を狙う? また、長期的なゴールを明確に設定した上で、そこに至るまでの道筋を逆算して策定する中期プランの中に、人材配置やローテーション施策を盛り込みたいと思います。これにより、自社のものづくりに対する理念を効果的に浸透させるための適切な人材戦略について、チーム内で議論を深めていく予定です。

クリティカルシンキング入門

グラフ活用で資料作成が劇的に変わる!

グラフ作成の要点は? グラフ化による情報の伝わりやすさの向上は非常に大きいと感じています。どのような種類のグラフであっても、適切な形で分析されたものを作成することが重要です。具体的には、X軸やY軸の内容を適切に設定することが求められます。また、フォントや色、下線などの要素も伝達力を高めるために工夫する必要があります。 プレゼン資料の工夫は? 特に、パワーポイントを用いたセミナーのプレゼン資料の作成や、製品企画、売上分析を行う際の説明資料では、グラフなどを活用した説明が効果的です。市場分析や現状のビジネス分析においても、手元の数字を視覚化することには大きな意義があります。このようにして資料を作成する際には、なるべく数値だけでなく、その数値の意味をグラフで説明することを意識しています。 確認と改善はどう? 最後に、作成したグラフが適切かどうかを確認するため、講座で学んだ情報と照らし合わせることが必要です。また、他の人のレビューを通じて資料の伝わりやすさを確認し、改善を図ることも重要です。

「活用 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right