クリティカルシンキング入門

もう一人の自分に出会う瞬間

自分の思考をどう? クリティカルシンキングを学ぶとは、自分の思考をチェックする「もう一人の自分」を育てることです。直感や経験則に頼った偏った思考ではなく、客観的に物事を捉えるために、頭の使い方そのものを学ぶ必要があります。 問いを立てるには? この手法は、「問い」を立て、その問いに対して自分の主張と根拠を整理しながら答えを導くプロセスです。特にお客様からの要望に対しては、課題の本質を正確に捉えるためにクリティカルシンキングが欠かせません。適切な問いを設定し、明確な主張と理由を持ってアプローチすることで、より最適な提案が可能となります。 チームでどう共有? また、チームでこのアプローチを共有し、共通の「問い」を持つことにより、全体の方向性が一致し、効率的なチームビルディングが実現できます。一人一人が直感的に安易な答えを出すのではなく、まずは問いを立て、ピラミッドストラクチャーを活用して論理的に組み立てることが重要です。 本当に正しいの? さらに、その立てた問いが本当に正しいのかを常に自問自答する癖をつけ、必ずアウトプットとして形にし、チーム内で共有することが求められます。

データ・アナリティクス入門

少しの変化、大きな気づき

なぜ迅速な判断が肝心? ビジネスの現場では、さまざまな要因が絡み合っており、原因を一概に特定するのは困難です。そのため、迅速に行動し、A/Bテストなどでユーザーの反応を確認していくことが大切だと感じています。 なぜ要素を限定する? 例えば、バナーのA/Bテストでは、デザイン、色味、訴求内容などを大きく変えすぎると、どの要素が効果をもたらしたのかが分かりにくくなるため、変動要素は可能な限り減らすべきだと考えています。 正確な検証は可能? 普段のマーケティング業務でもA/Bテストに携わっていますが、これまでは複数の要素を同時に変更するテストを実施していました。そのため、検証を目的とした精緻なテストが必要だと実感しています。 離脱理由は何故? また、グループワークでは「離脱した講師候補者へのインタビュー」という、非常にインパクトのある提案が出されました。自分自身、これまで「離脱した講師候補者からは意見を得られない」という固定観念があり、考えもしなかったため、対概念や仮説洗い出しのフレームワークを活用し、そうした思い込みを極力排除できる仕組みを構築していきたいと考えています。

データ・アナリティクス入門

議論と実践で広がる学びの輪

学びはどう活かす? ライブ授業では、講座の振り返りを行い、学んだ知識を実際の分析に生かす取り組みをしました。これにより、受講前と比べて明確に得たものがあると実感しました。 意見交換はどう効く? グループワークを通じては、自分の意見の推敲や新たな視点の獲得に大変役立ったと感じています。各人の考えを共有する中で、議論が深まり、より効率的に分析に取り組む方法についても考える機会となりました。 実践で何が見える? 実践演習では、講座の振り返りに十分な時間をかけることで、手を動かして考えることの重要性とともに、手を動かさずに思考することの大切さにも気づくことができました。フレームワークを活用しながら、分析のバランスや順序を意識して取り組む姿勢が印象に残っています。 目的と仮説の行方? また、目的の明確化や仮説設定の重要性を再認識しました。何を伝えたいのか、どのような問題を解決したいのかを最初にしっかりと考えることで、効率的な分析が可能になると感じました。ただし、仮説設定の段階でも実際に手を動かして考えたほうが良い面もあるため、両方のアプローチを意識することが大切だと思いました。

データ・アナリティクス入門

データが語る合格ストーリー

分析の目的は何か? 分析とは、異なる対象を比較する作業です。データには量的なものと質的なものがあり、分析の目的に合わせた適切なデータ収集が求められます。何を明らかにしたいのかを事前に定めた上で、さまざまな方法を用いて分析を進めることが重要です。なお、データ分析は社会の多くの分野で幅広く活用されています。 国家試験の変数を探る? 学生の国家試験合格の可能性を推定する際には、各変数についてもれなく、かつ重複なく抽出する必要があります。例えば、地域診断の項目に基づいて情報収集を行い、理論モデルに従うと同時に、優先順位を踏まえた効率的なアセスメントが可能になると考えられます。 重みづけはどう考える? 具体的には、国家試験に合格した学生と不合格の学生を比較する際に、MICEによる変数の再検討が挙げられます。高校卒業時の成績、入学試験の方式や結果、入学から4年生までの全履修科目の評価、粗点、出席状況、提出物の遅滞や未提出、模擬試験の結果の推移、さらには国家試験対策講座の出席状況など、さまざまな要素を盛り込むことが考えられます。しかし、各要素の重みづけについては現状、疑問点が残る状況です。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

データ・アナリティクス入門

データ分析で見えた改善のヒント

目的と比較の重要性を認識 実務では無意識で実践していましたが、分析においては目的と比較が重要であることを再認識しました。「何を伝えたいのか」によってグラフの作成方法を考える、という視点は今後意識していきたいです。また、分析において要素に分解することは大切ですが、目的が明確でないと細かく分解すること自体が目的化してしまう可能性があるため、注意したいところです。 分析結果を施策にどう活かす? 弊社サービスの利用率や更新率を高める施策を考える上で、ユーザーデータの分析における学びを活用したいと思います。具体的には、「利用率を高める」ことと「更新率を高める」ことという目的に分けて、ユーザーの利用データや解約時アンケートなどの各種データから必要な項目を抽出し、分析します。 チームとの効果的な議論をどう行う? 毎週のチームメンバーとのミーティングでは、学んだことをメンバーにアウトプットし、チーム全体の視座を揃えるように努めます。特に、「利用率を高める」「更新率を高める」ためのデータ分析をメンバーと協力して行い、効果的な施策を導き出せるよう、有意義なディスカッションを重ねていきたいです。

データ・アナリティクス入門

仮説で切り拓く受講生の挑戦記

分析って何を探す? 分析とは、物事を比較しながら目的意識を明確にし、仮説を立てつつ進めるプロセスです。分析を効果的に進めるためには、「What(何を)」「Where(どこで)」「Why(なぜ)」「How(どのように)」という手順に沿うと良い成果が得られる可能性があります。 フレームをどう活かす? 特に「Why」の段階では、ケースに応じて既存のフレームワークを活用することで、より深い洞察が得られるでしょう。また、分析結果をグラフなどで見える化することにより、その説得力は一層増します。 障害の本質は何? 障害分析においては、過去の事例を参考にしながら、現時点では見えていない問題点を抽出することが重要です。これまでは既存の数字を並べるだけで手探りだった部分も、今後は「何を明らかにするか」という目的意識を持って進めたいと考えています。 データ活用はどう? まずは、障害発生件数の減少を目指すために、どのようなデータが必要かを検討し、過去の事例から現在の課題を洗い出すことから始めます。その上で、得られた情報をもとに自分なりの仮説を立て、分析作業を着実に進めていきたいと思います。

データ・アナリティクス入門

代表値が語る!新たな比較のヒント

グラフだけで十分? これまで、単にグラフを用いて数値を視覚的に比較する方法に頼っていました。しかし、代表値に着目した比較はほとんど行っておらず、今回、加重平均、幾何平均、中央値、標準偏差といった比較に有用な数値があることを学びました。 業務への活用は? この学びを自分の業務にどう活かすかが、今後の課題だと感じています。手元にある数字の代表値を用いることで、どのような比較ができるのかを明確にすることが、新たな発見につながるデータ分析のカギになると考えています。 他地域比較は? 特に、前年や他地域との比較において、データを代表値に置き換えて検証することで、新たな示唆が得られるかもしれません。現状、扱っているデータはシンプルですが、代表値を取り入れることで比較分析がより効率的になる可能性を感じました。 数値分析を実践? まずは、現時点でのデータの代表値を算出することから始め、加重平均、幾何平均、中央値、標準偏差を用いた分析にチャレンジしてみたいと思います。これによって、短時間で効果的な比較が実現できるか、または新たな発見があるのかを検証していきたいです。

クリティカルシンキング入門

論理的思考で社内外プレゼンが劇的向上

提案資料作成の手法は? 社内外に対して提案資料を作成する際、今回学んだ手法が非常に活用できると感じました。特に口頭で伝える場合、思いついたことをそのまま伝えがちですが、伝える前に手順を踏んで整理することを心がけるべきです。 整理の重要性は何? まず、思いついたまま伝えると相手は混乱する可能性が高いです。そのため、一旦考えを整理し、主語と述語のつながりに注意して、具体化して伝えることが重要です。具体的な根拠を複数用意し、論理的な手法として「ピラミッドストラクチャ」を用いることで、より分かりやすく主旨を伝えることができます。「これぐらいでわかるだろう」という態度は避けましょう。 ピラミッドストラクチャーの活用法 課題解決策の提示においても、ピラミッドストラクチャーを用いて論理的に整理することが重要です。ブレインストーミングの会議では、メンバーから出された項目を分類し、整理して記録に残す習慣をつけることがポイントです。 念入りな準備がもたらす効果 このように、今回学んだ手法を活用して、提案時に念入りな準備を心がけることが、効果的で理解しやすい伝達に繋がると実感しました。

データ・アナリティクス入門

ロジックで磨く問題解決力

どうすれば問題を整理? 問題解決においては、まず「What⇒Where⇒Why⇒How」の順で分析を進めることが重要だと実感しています。特に、何が問題なのかを正確に把握するためには、問題の要素を十分に分解することが必要です。これまでは、要素分解が不十分であったと感じたため、今後はロジックツリーを活用し、問題解決に必要なポイントを漏れなく洗い出していきたいです。また、図を用いてMECEの観点から整理することで、問題の俯瞰と検索がしやすくなると感じています。 運用方法は本当に適切? 現在、チーム体制の転換期にある中で、従来の運用方法では今後問題が生じる可能性があると予想しています。実際に、これまでの運用を続ける場合にどのような問題が発生するか、その理由を今回のプロセスで分析できると確信しています。今後は、運用メニューや業務内容を特定の要素に分解し、MECEを意識しながら、問題の特定に取り組んでいきたいと考えています。 定性分析で何が見える? さらに、仕事において定性的な問題を分析する際、定量的な視点や切り口を増やす方法を学び、より具体的な分析に結びつけていければと思います。

戦略思考入門

福祉現場で感じる経済の本質

規模の効果は理解できる? 規模の経済性について、私の職場は福祉系でサービスの販売を行っていないため、固定費は主に人件費や電気・水道料金に充てられ、変動費は支援に使用するわずかな材料費に相当します。生産量の増加による1個当たりのコスト低減は、通常の製造業とは異なる面があります。 習熟効果は実感できる? 習熟効果に関しては、各職員の累積経験やスキルの蓄積が大きな役割を果たしています。業務を重ね、得た知見を共有することで、効率が向上し、より質の高い支援が実現され、結果として利用者の拡大にも繋がっています。 範囲拡大は有効か? 範囲の経済性においては、当職場には多くの資格保有者がいるため、現行の支援業務に留まらず、個別領域の拡大や新たなプログラムの導入も検討の対象となっています。既存の資源をさまざまな形で活用することで、効率的な運営が期待できます。 ネットワーク整備は可能? 一方、ネットワークの経済性については、現状、業務を推進する上で必要なスキルを持つ人材が不足しているため、優先順位の見直しや既存スキルの活用、さらには採用活動の強化が求められています。
AIコーチング導線バナー

「活用 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right