データ・アナリティクス入門

仮説思考で課題を究める実践術

フレームワークは何に役立つの? フレームワークの使いどころについて、3Cや4Pといったものは聞いたことがあっても、実際にいざというときに活用できるかどうかが重要だと感じました。今回の実習では、仮説を立てる際に有効に使えると実感できたため、今後すぐに引き出せるように知識整理ツールで整理しておきたいと思います。今後触れる新たなフレームワークも同様に蓄積していくつもりです。 仮説思考で未来は変わる? また、仮説を考えること自体に意義があるという新たな視点も得られました。これまでは、漠然と考えるべき時に考えるという認識でしたが、仮説思考を業務に取り入れることで、課題に対するアプローチがより具体的かつ効率的になると感じています。今後は、積極的にこの考え方を意識して、業務改善に役立てていきたいと思います。 課題解決のヒントは? 部署や会社内に存在する課題を、フレームワークを活用して仮説を立てることで、本質的な問題点の抽出や、課題解決に向けた具体的な行動への落とし込みが可能になると考えます。漠然と感じる課題を仮説によって明確化し、実際の状況把握やデータ収集を通じて、もっともらしい原因に絞り込むことが大切です。そして、その原因を排除するための具体的な行動計画へと繋げ、もし課題が解決しなかった場合には、新たな仮説を立て行動に移すというプロセスを繰り返すことで、問題解決へと導くことができるでしょう。

アカウンティング入門

財務諸表の読み方でビジネス力を向上

貸借対照表で何が分かる? 貸借対照表について学んだことで、資金の調達やそのストックの方法についてイメージすることができました。表や実際の企業の例を使って理解を深めることができ、貸借対照表と損益計算書の関係性が明確になりました。特に、純利益と純資産がリンクしている点が印象的でした。 借金はリスクか機会か? また、ケーススタディを通じて、借金という一見リスクに見える行為が、実際には事業を成功させる上で重要な要素になることを学びました。例えば、カフェの事例では、自己資金だけで開業した場合、コンセプトである非日常感が失われ、結果として売上が落ち、倒産のリスクが高まる可能性があることが具体的に理解できました。 競合分析に財務諸表をどう活用する? この知識を競合分析に活用したいと思います。具体的には、内資系や外資系、一般社団法人のような競合の貸借対照表を見て、企業の体力や戦略を予測することができると考えています。売上やシェアが好調そうな企業でも、実際には財務的に厳しい状況にあるかもしれません。 競合企業の財務諸表を各社のホームページからダウンロードして、基本的な資産、負債、純利益を見ながら仮説を立てます。さらに、損益計算書もチェックし、どれだけの利益が純利益に組み込まれているか、または寄付などで資産化しているかを確認することで、自社の財務的安定性を客観的に判断したいと考えています。

データ・アナリティクス入門

ギャップを明らかにする学びの道しるべ

現状はどう認識? 課題解決のためのデータ分析を行う際は、まず「what」「where」「when」「how」の観点で現状とあるべき姿の違い、すなわちギャップを明確にすることが大切です。特に「what」では、現状と理想との間にどのようなずれがあるかを捉え、その認識を関係者間で事前にすり合わせておくと、混乱なく分析を進めることができます。 手法はどう整理? 次に、ロジックツリーやMECEといった手法を活用することで、要素を段階的に整理し、状況を階層や変数別に切り分けることが可能です。実際の業務においても、初めて触れるデータに関して上長とのギャップ認識のずれから分析をやり直すケースがあったため、事前の共有が重要だと感じています。 結果はどう活かす? また、分析結果をもとに報告書や提言を作成する際は、その場しのぎの発想に頼らず、体系的にロジックツリーを活用して現実的な対策を検討すべきです。社員の意識調査のアンケートなどでは、まず「what」「where」「when」「how」に関する仮説を立て、その上で使用項目の選定とデータ分析に入るプロセスが理想的です。 対策はどのように? さらに、社内教育後の報告書で今後の取り組みを提案する際には、すぐに実行できる対策と時間を要する対策に分類し、複数の段階に分けて具体的な打ち手を検討することで、実現可能な内容を選定することが求められます。

アカウンティング入門

損益計算書で知る企業の本音

どの数字に注目する? 損益計算書を読み解く基本的な考え方は、まず大きな数字―売上、営業利益、経常利益、当期純利益―に注目することから始まります。これらの数字を押さえることで、企業の概況が把握でき、さらに各項目を比較や対比することで傾向や相違点を見出すことが可能です。こうした考察により、企業が大切にしている価値を損益計算書から読み取ることができます。 各項目の意味は? 具体的には、売上は事業規模を示し、値引き販売が影響すると売上総利益が減少する場合もあります。売上原価が高いと、原材料費の上昇や高原価率商品の売上比率が高い可能性が考えられます。営業利益は企業の本業における利益を示す一方で、必ずしも経営全体の状況を反映しているわけではありません。経常利益は本業外の収益や費用を含み、企業の借入状況などを把握する手がかりとなります。そして、当期純利益は臨時的な活動――たとえば災害や不動産売却など――の影響も受けるため、最終的な利益として重要な指標となります。 知識をどう活かす? この知識は、関連会社との折衝や制度改定の検討時に経営状況を確認するために活用できます。また、適正な労働分配率などを計算し、グループ内や業界内の比較を行うことで各社に具体的な数値を提示する際にも役立ちます。各社の損益計算書をもとに計算するという実践的なアプローチが、具体的な理解と説得力のある説明につながります。

デザイン思考入門

共感なくして論文は成らず!挑戦の学び

論文準備は順調? 現在、学会発表用の論文を準備しています。自社の事例に基づき、他社ではどのような状況か、またユーザーがどのように感じているかを知るため、インタビューを実施する予定です。 不満の理由は? 論文のテーマは実務に直結しており、「教科書通りの開発手法を実施したにもかかわらず、なぜユーザーから不満が出るのか」という問いから始まります。書き上げた部分には共感が不足している点も見受けられるため、インタビューの際にはその点を重点的に理解してもらえるようにしたいと考えています。 実践はどう進む? 実践段階はこれからですが、ちょうど良い機会であると捉えています。論文が煮詰まっている状態も、今後の改善に向けた良いタイミングだと前向きに受け止めています。インタビュー後に「やはりあれも聞いておけばよかった」という状況が起こる可能性は十分にあるため、慎重に準備しつつ、再度インタビューが必要になることもあらかじめ想定しておくのが良いと感じました。 共感は伝わる? また、「共感」はデザイン思考の中で最も重要な要素の一つだと認識しています。実際、プライベートで少年サッカーのサポートをしている際、ゲームに参加して選手と一緒にプレイすることで、選手の現在の能力や、練習の成果がどの程度反映されているかを実際に感じ取ることができています。これも「共感」を得るための一つの方法だと考えています。

データ・アナリティクス入門

データ分析の本質を再発見!

分析と整理の違いは何か? 「分析」、「収集」、「整理」はそれぞれ異なる作業です。データ整理で分析が終わることもしばしばあり、比較対象があいまいになることもあります。また、見せ方に時間をかけすぎると、「相手に伝えたい」という本来の目的が不明瞭になることが多々あります。これは、「分析とは比較である」ことや「目的に立ち返ること」がしばしば抜け落ちがちだからではないでしょうか。楽な方に流れる思考や、目に見える分かりやすいものに飛びつきやすいバイアスに引っ張られる癖があります。自分の特徴を含めてこれらをしっかり俯瞰して整理しておかないと、学びの方向性やその捉え方がずれてしまう可能性もあると感じました。 常に数値を更新する重要性 販売状況や市況状況、社内状況の分析を進める中で、過去の基準や初期値がたびたび変更されてきました。分析が比較である以上、常に更新された数値のみが注目されることが多いです。このような状況では正確な分析ができず、意思決定に繋がらないと感じています。これはとても危険なことかもしれません。 データ整理はなぜ重要か? 様々な分野で目的とされることを視野に入れ、使用されるデータの洗い出しを行います。比較するためにも整理が必要ですので、いつでもデータを抽出できるよう、整理を行うことが重要です。整理された状態から、それぞれの目的に合わせた比較基準を設計することが求められます。

クリティカルシンキング入門

分解力で未来を切り拓く学び

分解の基本はどうする? 分解の仕方によって、物事の見え方や捉え方が変わることを理解しました。分解は最初から細かく行うのではなく、まず全体を定義し、広い視点で傾向を捉えることが重要です。その際、分解の切り口として「いつ、誰が、どのように」を意識すると探しやすくなります。また、分解にはMECE(漏れなくダブりなく)を意識することが求められ、層別、変数、プロセスの分解が考えられます。一度分解して終わらず、他の視点も探し続ける姿勢が大切です。 どんな視点で分解する? システム開発提案などで改善系の提案を行う場合には、操作時間や処理時間、問い合わせの状況、不具合の発生状況など、さまざまな視点で分解することが重要です。これにより、より費用対効果の高い提案が可能になります。これまでもデータ分析を行ってきましたが、自分の想定に偏ったデータ分解をしていたことに気づかされました。他の視点があるのか、偏りがないかを常に自問自答しながら、問題の本質を捉えたいと考えています。 来期提案で注目すべき点は? 来期の体制提案では、現行システムの課題を洗い出すことを目指しています。そのために、現行機能の操作性、問い合わせ、要望一覧をまとめ、来期で取り組むべき改修内容の有効性を示し、それに沿った体制を提案したいと考えています。MECEを意識したデータ分析を活用し、説得力のある提案を行えるように努めます。

デザイン思考入門

フレームで拓く新たな発想

会議手法はどう変わる? 自社では会議でブレインストーミングが頻繁に行われていますが、今回の講義で紹介されたような体系的な手法はなかなか取り入れられていませんでした。業務の効率や生産性を向上させるためには、新しい技術の導入によって働き方や考え方を大きく変革する必要があると感じます。そのため、これまで出にくかった様々なアイデアの提案と実践が非常に重要になるでしょう。今までは短時間の議論で出た意見を何となく施策に反映していたので、これからは初期段階からフレームワークを活用してアイデア出しに真剣に取り組みたいと思います。 枠を超える発想は? 自社では、業務の多くの課題対応が業界の規制や社内ルールによって限定されているため、共通認識のもとで議論が進みやすい一方で、枠組みを超えた意見が出にくい状況にあります。そのため、新たな発想が求められるプロジェクトにおいては、まず柔軟な発想を提案し、それを受け入れるための意識改革が必要であると強く実感しました。 実践ルートはどうする? 今回学んだフレームワークは、可能性のあるアイデアを漏れなく集め、分類や優先順位付けを行う有用な手法です。ただし、かなりのリソースが必要となるため、関係者全員を招集して完璧に実践するのは難しいかもしれません。まずは個人または少人数のグループで実践しながら、自社に最適な方法を模索していこうと考えています。

データ・アナリティクス入門

平均だけじゃ語れないデータの秘密

データ分析の秘訣は? 今週は、数字に集約してデータを比較・分析する手法を学びました。単純な平均値だけでなく、データの中心を示す代表値や、どのようにばらついているかを示す散らばりの視点からも計算・分析することで、データの偏りや傾向を正確に捉えることができると理解しました。一方で、単純平均だけに頼ると誤った分析結果に至る可能性があるという点も印象的でした。特に、実践演習での受講者の平均年齢の設問において、単純平均では実際のデータの分布と乖離があることが実感できました。 最適計算方法は? また、代表値や散らばりには複数の計算方法が存在することも学びました。状況に応じて最適な計算方法を選択し、仮説の検証に役立てていきたいと考えています。 人流データはどう見る? 例えば、人流データの年度別や地域別での比較において、従来は増加率を用いることが多かったため、得られる情報が限られていると感じていました。今回学んだアプローチを踏まえ、具体的な仮説のもと、どの計算方法が最も有効かを検証していくつもりです。 グラフの意図を探す? 自分の業務では、可視化されたグラフから示唆を得る場面が多いですが、まずはそのグラフがどのようなデータ項目から構成されているのかを数値で確認し、どのような意図で作成されたのかを図表とともに理解することを意識して取り組んでいきたいと思います。

アカウンティング入門

自分の会社をもっと良くするために!B/SとP/Lの完全攻略

B/SとP/Lの関係性は? B/Sの構成について理解が深まりました。特に、P/Lとの関係性や会社の健康状態を把握する上で、単なる構成の学習ではなく、実質的な理解が得られたことが大きいです。現在、自社の内部留保が多くB/Sが安定している状況を踏まえ、どのように攻めていくかが課題となっていると感じました。 他社との比較で見つかること まず、当社のB/Sを分析し、給与のベアに充てる財源を確認しました。この上で予算の計算を行い、費用をどこまでかけられるかを明確にする作業を進めました。他社のB/Sも確認し、人件費の割合を算出することで、同様の水準まで引き上げる計画を立てました。これらの分析をもとに、今期中に役員提案を行う予定です。 財務状況をどう強化する? また、自社および他社のB/S・P/Lを読み解くことを進めています。同業他社のB/S・P/Lも参考にし、自社のアカウンティング上の強みと弱みを洗い出しました。さらに、経理部門とも相談し、人的資本経営に向けた予算算出を行っております。この一連の作業は、10月から行う予定の予算に反映させる計画です。 全体的なプロセスとしては、自社の財務状況をしっかりと把握し、他社との比較を行い、具体的な予算計画を立てることで強化しています。これにより、より明確な財務戦略と人件費の最適化を図ることが可能となりました。

データ・アナリティクス入門

残業削減の鍵はロジックツリーとIT活用にあり

問題の本質をどう見極める? 問題や課題に対応する際、すぐに対応策を安直に打ち出すのではなく、まずはその問題や課題がどのようなもので、なぜ、どこで発生しているのかを考える必要があると学びました。これを実現するために、MECEの考え方を用いてロジックツリーで問題や課題を細分化し、対応策を複数検討し、状況に応じて採用する対応策を決定することが合理的な判断となることがわかりました。 IT活用で解決策を見つけるには? また、ITの活用によって業務効率化を検討する際には、「業務効率化」という漠然とした課題を、ロジックツリーで細分化することで解決の手がかりを得ることができます。具体的には、どこで、なぜ、どのような問題が発生しているのかを特定し、その問題を解消できるITを導入することによって、費用対効果を意識した問題解決が可能となることを理解しました。この学びは、現実の問題解決に活かせるものだと考えています。 部署の問題をどう改善する? 現在、所属する部署では残業時間が非常に多く、人員も多いという問題があります。この部署でどの作業が一番多く時間を要しているのかを、ロジックツリーで特定しました。その結果、出荷日や納期変更が頻発している作業が問題であると判明しました。したがって、この部分に有効なITの導入や、業務プロセス自体の見直しを提案したいと考えています。

データ・アナリティクス入門

ロジックで変える!問題解決のヒント

要素を分解する理由は? 要素を細かく分解して考えることの重要性を実感しています。ロジックツリーやMECEを用いることで問題解決に導く考え方は知っていましたが、実際の業務で活用する機会はほとんどありませんでした。しかし、例えば売上不足の原因分析において、感覚的な判断のみで進めると、実は客単価に問題があるにもかかわらず、売上数の伸び悩みにだけ着目してしまい、重要な視点を見落とす可能性があることを改めて認識しました。 良い切り口はどこに? また、悪い面ばかりに目が行きがちですが、良い切り口も取り入れることで全体の傾向が見え、適切な対策を講じやすくなると感じます。たとえば、自社で提供しているクラウドサービスの解約要因やアップセルの要因を分析する際は、業界、契約ユーザー数、利用部門、契約年数、ログイン回数などを軸に、理想と実際のギャップをMECEの視点で整理することが有用だと思います。 問題の整理はどうする? 今後、業務上で何かを分析する必要が生じた際には、まず直面している状況を具体的に整理し、問題(What)を明確に定めることが大切だと感じています。その上で、問題がどこにあるのか(Where)、原因は何か(Why)、そして解決策はどうあるべきか(How)をロジックツリーを用いて整理することで、問題解決の思考を習慣化していきたいと考えています。

「状況 × 可能」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right