データ・アナリティクス入門

数値の裏に潜む学びのヒント

データ比較の基本は? データ分析は比較という原則に基づいており、数値同士の比較を通してデータの実態や分布を探る作業です。まず、データの中心に位置する代表値を把握し、その上でデータがどのように散らばっているかを確認することが基本となります。代表値としては、単純平均のほか、加重平均、幾何平均、中央値が用いられ、散らばりを評価するには標準偏差の算出が有効です。 業務で分布を確認すべき? 普段の業務においては、データの分布を確認する試みが十分になされていないと感じます。分布を求めるためには、まずデータを分類するための項目が必要です。そのため、データ加工を前提として目的を明確にしながら項目を選定することが重要です。分析の目的と加工という手段を意識して検討することが、成功のポイントだと実感しました。 算出方法をどう活かす? 今回紹介された算出方法を効果的に活用するためには、標準偏差の算出、ヒストグラムの作成、加重平均や幾何平均を使いこなすスキルが求められます。今後は、これらの技法を実践的な練習問題などで訓練し、習得していきたいと考えています。

アカウンティング入門

イメージと数字で探る企業の真実

どうして企業は違う? 業種や企業の考え方によって、適切な範囲内で変化するという点が一番の学びでした。特にオリエンタルランドでは、価値創出のために人件費が売上原価と位置付けられている点が非常に新鮮に感じられました。また、すぐに財務諸表を見るのではなく、まずその企業の特性を思い浮かべた上で財務諸表をイメージし、実際の数字と照らし合わせることで、自分なりの仮説が見えてくる点に学びの深さを感じました。 業務で何を実践? 今後は、①自分の担当業務においてこの手法を活用したり、日経新聞などで気になる企業について詳細に調査する際に役立てたいと考えています。②また、自社業務で様々な企業の財務諸表を分析する機会に備え、その知識をしっかりと身につけたいと思います。 試行はどう進める? 具体的には、まずある企業を選び、その企業の財務諸表を自分なりに予想します。その上で実際の数値を確認し、仮説の検証を行うというサイクルを繰り返していく予定です。その結果を単に自分の中に留めるのではなく、何かしらの形でアウトプットすることでより実践的な学びに結び付けたいと考えています。

データ・アナリティクス入門

データが導く未来へのビジネス突破口

データ取得の方法をどう改善する? 複数の仮説を立て、それを検証するためのデータを取得することについて学びました。これまでは、既存のデータを用いて検証することが多く、完全な結果ではないと感じることがありました。今後は、仮説の精度を向上させるために、データの取得方法を工夫し、再構築していきたいと思います。 ニーズ調査で次に向かうべきは? また、担当するマーケットのニーズ調査についても学びました。従来の一般的な仮説からもう一歩踏み込み、「なぜ、なり手不足になるのか」という問いに対する仮説を立てて検証し、その結果に基づいて課題を解消するようなサービス案を考えることが重要だと認識しました。 ワーキンググループの成功へは? 現在、社内で行っているワーキンググループでこれを実践しています。ニーズの検証までは完了していますが、まだ具体的なビジネスには結びついていません。「Q2」を実践することで、早期に実際のビジネスへと発展させたいと考えています。 仮説とデータ活用の展望 今後も、仮説の立て方やデータの取り扱い方を工夫し、実務に活かしていきたいです。

アカウンティング入門

ビジネスモデル理解が広がる!学び放題の魅力

多様なビジネスモデルを学ぶには? これまでの実践演習や授業での演習を通じて、さまざまな業種や業態のアカウンティングからビジネスモデルを考えることができました。特に、製造業だけでは考えにくいサービスビジネスモデルを、共に受講した方々の視点や発想を取り入れることで理解する助けとなりました。ライブ授業はやはり楽しいです。 学んだ知識をどう活用する? 現在、会社組織の目標設定を考えていますが、これまで学んだことを活かしている一方で、まだ十分ではないとも感じています。そのため、P/L、B/S、C/Fといった知識を駆使し、引き出しを開けるようにしながら問題を解決していきたいと考えています。 知識を定着させるには? もちろん、業務内で学んだことを使っていくことは当然のことです。しかし、業務だけでは分からないことがあるため、学習を深掘りして継続する必要があります。また、知識が消えていかないように、定期的に基礎知識に触れることも重要です。これが最も難しい部分だと思いますが、学び放題の永年プランを契約しているので、毎日短時間でも動画学習を続けていくつもりです。

クリティカルシンキング入門

データ活用で見えた新たな視点と工夫

データ加工法をどう活用する? データの加工法について学びました。与えられたデータをそのまま使うのではなく、自分で項目を追加することを意識することが重要です。例えば、絶対値や相対値(比率)を追加することで、データにひと手間加えることができます。数字をグラフにすることも非常に効果的です。また、データを分解する際には、複数の切り口で考えることで異なる見解が得られることがあります。 人件費分析で何を検証する? 現在、人件費分析を行っているため、今回学んだ切り口や加工法を実践しています。具体的には、時間外労働時間の妥当性を検証するために、データを性別、既婚未婚、年齢(若手かベテランか)、部門ごとに切り分けて情報を抽出し、グラフで可視化します。 PowerBIでどう可視化する? 人事データを入手したら、比率や不足している情報を追加し、勤怠情報としての表を作成します。このデータを可視化するためにPowerBIを使用し、グラフ化します。さらに、散布図を用いて時間外労働時間と相関のある事柄を確認し、そのデータを参考に実際に関連性があるかどうかを調査します。

データ・アナリティクス入門

ナノ単科で見つける学びの扉

自分の学びを振り返る? 自分の言葉で学んだ内容を整理する機会が多く設けられており、復習の面でとても有意義でした。また、これまで習得してきた分析手法を再確認できた点も良かったです。ライブ授業の録画を用いた例題で、実際に手法を振り返るとともに、他の受講生のコメントからうまく言葉にできなかった点もしっかり復習できました。 分析と仮説はどう築く? 実務においては、まず「what」「where」「why」「how」のステップを踏みながらアンケート分析を行い、仮説検討の際にはフレームワークを活用して網羅的に考えることを重視したいと考えています。さらに、「選んで比較」を繰り返すことで、最終的に一つのストーリーとして筋を通す資料を作成できると思います。 実践経験はどう見る? 6月下旬から予定されている社内のアンケート分析において、これらの手法を実践していく所存です。一方で、実践経験が不足している点は課題と感じています。そこで、実務以外にも統計局のデータを用いて地域ごとの人口動向とその原因について検討するなど、さらなる練習機会を積極的に設けたいと思います。

データ・アナリティクス入門

問題解決力を高め、シナリオ実践へ挑戦

問題解決のプロセスとは? 問題解決のプロセス、What、Where、Why、Howについて学びました。私は前職でQC的な問題解決を学び、問題やボトルネックの特定、「なぜなぜ分析」、計画、アクションのような手法で考える癖があり、今回学んだ内容と似ている部分が多いと感じました。しかし、元の思考フレームワークに戻りがちな自分を再認識しました。 フラストレーションを解消するには? データ分析や見える化は行っているものの、仮説の検証や具体的なアクションを自発的に行っていない部署の現状にフラストレーションを感じています。おそらく、具体的なアクション(How)を実行できないと諦めているために、根本原因(Why)の追求が疎かになっているのではないかと考えています。 新たなシナリオ作成と実践法 今回学んだことを基に、「How」を実行できると仮定してシナリオを作成し、実践してみたいと思います。また、一連のプロセスを効率的に進められるよう、自身をトレーニングし、さらにBIツールやPythonを活用して知見やスピードを向上させる手法を学びたいと考えています。

データ・アナリティクス入門

チームで切り拓く未来への一歩

データ検証の意味は? データを検証し、仮説を立てた上で再びデータを確認する―リスクを抑えながら新たな可能性を模索する問題解決のプロセスについて学びました。その中で、A/Bテストの活用についても知ることができました。 実践規模の見極めは? 仕事に活かす方法として、プロセスをどの規模で実施するかが、データ抽出の視点や意思決定の重要度によって左右される点に気付かされました。企業の規模によっては、実行が難しい場合も出てくると感じました。 チームでの一歩は? そこでまずは、自分のチーム内で進められる範囲から取り組んでみようと思いました。 チーム育成のポイントは? チーム内での人材育成プロセスに、データの検証と仮説の立案を取り入れ、今後の計画に反映させたいと考えています。近年、チームメンバーとなる人の出身部署が多様化しているため、前提となる知識やその特性にも違いが出ていると感じます。これにより、それぞれの出身部署や知識の有無を的確に把握し、最終的には一人前のチームメンバーとして成長するプロセスを、より効率的に進めたいと思います。

データ・アナリティクス入門

データ分析にAI活用!新たな発見の連続

ChatGPTを活用する意味は? 実践演習がメインの週だったが、データ分析は答えがない世界だと感じているので、自分で考えるだけではなくChatGPTを共に使用して問題解決を試みた場合、どのような成果が得られるかに焦点をあてて演習に取り組んだ。普段は自分の頭で考え一人で結論を出していたが、そのことに限界を感じていたため、今回の受講はAIを活用する実践の場として非常に学びが多かった。 AIの活用で得られる視点は? どれだけ訓練を積んでも、人間である以上、自らの思考には必ず偏りがある。多面的な視点でデータ分析を行うことが問題解決の第一歩であり、AIを活用して多くの視点を得ることが有効だと改めて気づくことができた。これからは、普段からAIを十分に活用するよう心掛けたい。 AI相談の工夫を学ぶ データを分析する際、必ず一歩立ち止まり、AIに素直に相談してみるようにする。AIをデータ分析のパートナーとするため、相談の仕方を工夫することも学んだ。正解を出すことを目的とするのではなく、自分の思考を広げるためのAI活用を身につけていきたいと思う。

クリティカルシンキング入門

自信ゼロでも伝わる!ピラミッドの力

講座を選んだ理由は? 日本語の使い方に自信が持てず、この講座を受講する決意をしました。講座では、まず自分の主張を明確にし、その後に理由や根拠を述べるピラミッドストラクチャーの考え方を学びました。実務でも主張から話すことを心掛けているため、この手法は今後も継続していきたいと考えています。 自分の意図をどう伝える? 具体的には、上司に相談する際は、自身が行いたいこととその理由を端的に伝えます。また、他の人に仕事を依頼するときは、やってほしい内容とその目的を明確にし、認識の齟齬を防ぐ指示を心掛けます。さらに、客先に連絡する際には、依頼内容とその目的をお互いに確認して、スムーズな進行を目指すことが大切だと感じました。 論点伝達の方法は? 加えて、会議、チャット、メール、週報などの書類作成時にも、ロジックツリーとピラミッドストラクチャーを意識し、論点を明確にした上で結論と根拠を伝える方法を実践していきます。社内外で伝え方の上手な方々の話し方や文章も参考にしながら、自分の考えをしっかり伝え、協力を得られるコミュニケーションを心掛けています。

クリティカルシンキング入門

問いから広がる学びの世界

なぜ問いが必要? 問いから始めること、問いを持ち続けること、そしてその問いを共有することの重要性を改めて実感しました。分かりにくい表などについては、まずどうすれば理解しやすくなるかを考え、数字やグラフなどで可視化する努力が求められると認識しています。前週までに取り組んだ内容であっても、新たな発見や気づきがあり、反復して定着させる必要があると感じました。 どんな視点が有効? また、どの場面でも応用できる普遍的な考え方であるため、常に意識して実践していくことが大切だと思います。直近の研修課題作成にあたっては、まず問いを立て、視野や視点を変えて取り組むことがポイントだと感じました。書き出したアイデアを関係する人に伝え、フィードバックを受けることで、新たな気づきや改善につながると確信しています。 自信はどう築く? とにかく、自分自身の習熟度に不足を感じたため、今回の講座内容をもう一度見直し、関連するメンバーや上司と積極的にコミュニケーションを取りながら、仮説や問いをぶつけてアウトプットを重ねることで、自信を深めていきたいと考えています。

クリティカルシンキング入門

本質を捉える実践思考術

なぜイシューが大切? イシューの特定が最も重要であると実感しました。目的や問いを明確にし、何が課題であるかを意識して考えることが、クリティカルシンキングの本質であると学びました。もしイシューを正確に捉えずに進めてしまうと、求める打ち手に辿りつくことができなくなるため、常にその視点を持つことが不可欠です。 課題整理はどうする? プロジェクトでの課題に直面した際には、まず課題を分解して考えることが効果的です。提案や説明の際も、目的や課題を明確に伝えることで、相手に理解してもらいやすくなります。このアプローチは、課題に対する解決策の解像度を向上させるためにも役立ちます。 仲間の知恵は? また、問題に対してすぐに打ち手を検討するのではなく、まずは課題やイシューが何であるかをしっかり意識すること、そして分解して考える習慣を身につけることが重要です。自分一人で考えるのではなく、チームメンバーや上司の意見を取り入れることで、思考の幅を広げることができ、他のチームの課題に対しても同じく思考し、言語化する練習を継続することが大切だと感じました。

「学び × 実践」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right