データ・アナリティクス入門

分解で見える企画成功の秘訣

どうして分解が必要? 問題を特定するために、物事を分解する重要性を再認識しました。特に、What、Where、Why、Howといった各要素を順序立てて整理することが大切ですが、どうしても先にHowに偏らないように注意が必要です。また、原因を探る際にも、対概念を活用して思考の幅を広げることで、行き当たりばったりにならないよう努めています。 企画はどう進む? このアプローチは、マーケティング施策の企画や振り返りの段階で活用したいと考えています。企画時には、お客様の課題を起点としてWhat、Where、Why、Howを考慮し、振り返りの際には、企画当初の想定と異なる結果や、思わしくなかった施策について、原因を丁寧に掘り下げることが目標です。さらに、想定通りの成果が得られた場合にも、何が良かったのかを整理し、今後の改善に役立てていきたいと思います。 年度末は何を見直す? 年度末の振り返りにおいては、良かった施策、期待に沿わなかった施策、今後は中止すべき施策、そして継続すべき施策を洗い出し、それぞれの原因を細かく分析していく予定です。この手法は、私自身だけでなく、メンバーとも共有しながら進め、今後のマーケティング施策の質の向上に繋げていきたいと考えています。

データ・アナリティクス入門

物流の待機料問題を解決する分析手法の習得

分析の基本とは? 「分析とは比較である」という教えについて学びました。これは、課題を要素に分解して整理し、個人や会社の状況に応じた基準(目的)を設けて、その要素と基準を比較することを意味しています。基準を「達成すべき目的」とすると、各要素の優先順位や捨てるべきところが明確になってくると感じました。逆に、基準に満たない要素は改善策の検討対象として捉えることができることも学びました。 物流業界での分析方法は? 私は物流会社で働いており、2024年問題の一つとして「待機料」の明確化が挙げられます。待機という問題を要素(要因)に分解し、それらを自社都合と輸送会社都合にグループ化することで、分析の対象が明確になると考えました。 データ活用で何が変わる? 現在、導入済みのアプリから取得できるデータを使い、要素を整理して分析対象を決定する予定です。本講座を通じて、適切な分析方法を理解していこうと考えています。 待機料と時間の相関は? 具体的には、待機料の標準偏差値を算出することで支払い金額の正常範囲を決定し、異常値はチェックする体制を構築します。また、待機料の発生要因と待機時間の相関関係を数値化し、どの要素に対して改善策を打つべきかを社内で共有します。

マーケティング入門

自社の強みを活かす第一歩

顧客の本音は何か? 顧客のニーズ、つまりお客様が何を求めているのか、何を欲しているのかをしっかり考えることの重要性を学びました。そして、そのニーズに結び付けるためには、自社の強みをいかに活かすかが大切であると実感しました。特に、顧客に製品の良さを伝えるためには、ネーミングが大切な要素であることも心に留めました。 自社の強みを見極める? しかし、自社の強みについては、まだしっかりと分析できていない部分があると感じます。これを機に、改めて自社の強みを考えてみたいと思っています。さらに、顧客のニーズを正確に把握するためには、アンケートなどをもっと活用していく必要があります。アンケート自体は行ったことがありますが、質問事項や状況次第では本音を引き出せないこともあるので、そこに工夫が必要と感じています。 次の一手はどうする? 今後は、まず自社の強みや活かせる部分をしっかりと分析したいと思います。そして、顧客の真のニーズを探るために、アンケートやインタビューをしっかりと行い、本音を引き出せるような質問を意識して作成していきたいです。また、ネーミングに関しても、何を伝えたいのか、顧客が何を求めているのかを考慮しながら慎重に決めるよう心掛けたいと思います。

データ・アナリティクス入門

ロジックツリーで見えた解決の道筋

問題解決の第一歩は? 優先度や重要度が高い問題を選び、結果から要因を抑えることが重要です。以下のプロセスに沿って進めます。 まず、現状把握です。直面している課題や状況を明確にします。次に、原因の特定を行い、問題箇所を絞り込み、その原因を分析します。最後に、原因に対する有効な解決策を考えます。 多様な視点を持つ意義とは? この一連の流れをスムーズに行うためには、もれなくダブりなく、意味のある分け方が必要です。そのためには、多様な視点や切り口を持つことが重要です。 経験に頼る危険性は? 長い間仕事をしていると、経験や勘に頼りがちですが、ここでは必ずしもそれが最善策とは限りません。プロセスを再確認し、思い込みを排除するために要素を分解し、状態を把握して、問題を多く出すことが求められます。 ロジックツリーの活用法は? そのために、ロジックツリーを使用する機会を増やしていくことが有効です。実際の職場で何が起きているのかを確認するためには、課題をロジックツリーを用いて整理し、自分が把握できていない部分を確認することが重要です。 問題の優先順位をどうつける? その上で、優先度や重要度が高い問題を明確にして対策を立てることが必要になります。

データ・アナリティクス入門

訪日旅行を再考する戦略の鍵

学んだ知識は有効? 7月にマーケティング入門と戦略思考入門を受講した経験があり、今回のGAiLの課題ではこれまで学んだ内容とデータ・アナリティクス入門で学んだことが融合し、スムーズに取り組むことができました。 旅行商品の問題点は? 私の所属する訪日旅行のチームでは、アメリカの旅行会社と協力して訪日旅行商品を企画開発し、仕入れや手配、受客対応を行っています。しかし、現状の訪日旅行商品は基本的に東京・京都・大阪の周遊ツアーに偏っていて、旅行者にも受入先にもあまりメリットがないオーバーツーリズムの問題が深刻化しています。この現状をどうにか打破し、解決策を導くために「3W1H」を活用して考察していきたいと思います。 観察の視点は何? まず、日常で目にする商品やサービスを観察するときに、それがなぜヒットしているのか、その背景を考えることを心掛けています。具体的には、商品やサービスが誰に向けられているのか、どのようなニーズを満たしているのか、セールスポイントは何か、という要素を分析します。また、日本人が感じる日本の魅力と外国人が感じる魅力にはしばしば隔たりがあるため、日本政府観光局のデータと海外メディアのデータを比較分析し、観光素材の調査を進めています。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

クリティカルシンキング入門

問いと視点で挑む自己改革

受講で何を感じた? 今回の受講を通じて、自己のクリティカルシンキングの力が十分でないことを痛感しました。クリティカルシンキングとは、問いを立て、物事の本質を見極めながら最適な解決策を導く思考法であると理解しています。 視点の切替えはどうなってる? 問いを立てる際には、「視点・視座・視野」という三つの“視”が重要であり、状況に応じて柔軟に切り替える必要があります。これまで私は現場視点に偏りがちで、最適な解決策を導き出すことができていませんでした。また、構造分解や要素分解においても、特定の視点にとらわれることで本質的な問題解決が十分に行われなかったと感じています。 MECEは活かせた? さらに、MECE(もれなく、ダブりなく)の思考も不十分で、中途半端な答えに終始してしまう傾向がありました。今後はこの点を意識し、日々の訓練を積むことで思考力を向上させていきたいと考えています。 業務改善に問いは効く? 実務においては、広告戦略の立案や効果の分析、プレゼンテーションの際に「問い」を意識し、目的や課題を明確化します。加えて、MECEを活用して情報を整理し、複数の視点から本質に迫ることで、より効果的な施策や業務改善へと結びつけていく所存です。

データ・アナリティクス入門

実践で感じたABテストの奥深さ

テスト手法のメリットは? ABテストは、参加者をA群とB群に分け、同時期に検証を行う比較手法であると学びました。この手法は工程が少なく、比較や分析が容易である点が大きなメリットです。しかし、正確な結果を得るためには、比較ポイントを明確に設定し、その他の要素を同じ条件に統一することが重要です。実施時期をずらしたり、多くの異なる要素を入れてしまうと、正確な比較ができなくなるため注意が必要です。 接触率検証の進め方は? 顧客への電話による接触率の検証にもABテストを適用しています。具体的には、予測ツールを用いて算出した接触率が最も高いとされる時間帯と、ランダムに行った場合の接触率を比較することで、予測ツールの効果を測定しています。また、手紙やSMSの文面案についてもABテストを実施し、より効果の高い方法を見極めています。 テストテーマはどう決める? ABテストの導入にあたっては、まずテストのテーマとターゲットを明確に決定することが重要です。テストテーマは業務目標に直結していることを意識し、ターゲットは一つの要素に絞るように確認します。さらに、比較する際には、データ数、期間、手法が全て同一であるよう計画を立て、正確な検証ができるよう努めます。

データ・アナリティクス入門

小さな実験から大きな発見

原因分解はどうする? 問題の原因を明らかにするためには、まずプロセスに分解することが重要です。また、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが求められます。 テスト実施はどう? ABテストは、条件をできるだけ揃えて比較する有効な手法です。実施する際は、まず目的や仮説を明確にし、検証項目をしっかり設定することが大切です。さらに、テストは1要素ずつ行い、複数の要素を同時に検証する際は他の手法の検討が必要です。加えて、同一期間で実施することでテスト要素以外の環境要因の影響を最小限に抑えることが可能となります。 検証法はどう考える? 広告効果の検証においては、CVポイントやKPIに応じて適切な検証方法が変わります。実際にABテストを実施する場合もあるため、どのポイントを検証するかという仮説設定が非常に重要です。 効果はどこで現れる? 現在、広告効果の検証と分析に活用しているソリューションがあり、さらに新たなソリューションの開発も進めています。両方のソリューションを同時に走らせることで、どのKPIやCVポイントで新しいソリューションの効果が発揮されるかをABテストによって検証する絶好の機会だと考えています。

データ・アナリティクス入門

データ分析の魅力に触れる旅

なぜ目的を決めるのか? 「分析とは比較なり」という言葉が分析の基本を表しています。まず、比較を行うための目的をしっかりと決定し、その目的に合った適切な比較対象を選ぶことが重要です。そして、得られた比較結果をどのように視覚化・言語化して伝えるかも、分析の重要な要素です。これらが全体的に連携し、一つの体系としてまとまっていることで、分析は効果的に行われます。各ステップで適切な判断を行うことにより、データ分析は精度を上げることができます。 有効なデータの活用法とは? プロジェクトの進捗状況の把握や遅れの可視化と原因分析、製品の製造データの分析、それを基にした工程改善案の提案、さらに最終製品の性能・品質データの分析とそのトレンドの原因の把握など、それぞれの場面で明確な目的と最終的な活用イメージを持って分析を行うことが重要です。これによって、効果的なデータ分析の結果を示すことができるでしょう。 データ収集から始めるには? 特に最終製品の性能・品質データの分析には豊富なデータがあり、因子もある程度特定されています。自らがデータを入手しやすい立場にあるため、早速データを集めて分析を進めていこうと思います。まずはデータの収集から始めてみます。

マーケティング入門

質と戦略で顧客を魅了する

マーケ戦略の意義は? マーケティングは、顧客が満足した状態で利益を得る手法であるという定義が、とても印象に残りました。特にエンターテイメント産業では、作品や商品の質の良し悪しを重視してきた自分にとって、「顧客の行動変容を起こせたか」という視点は、今後の行動指針として重要になりそうです。 複数アプローチは? 製品を顧客に購入してもらうことで利益を生み出す業態であるため、マーケティングでは複数のアプローチが必要であると感じました。たとえば、①顧客満足度が高い質の高い商品を作る視点と、②出来上がった製品をいかに多くの人に届けるかという視点とがあり、さらに他のフェーズも存在します。それぞれのポイントで成功確率を上げるために、マーケティングの知識をどんどん増やしていくことが、利益貢献の機会を拡大すると考えています。 顧客分析はどう? また、第一のフェーズでは顧客分析を通じて、クリエイティビティ以外の要素を補完し、武器とすることができるため、常に具体的な顧客像を意識しながら業務を進めたいと思います。第二のフェーズでは、マスメディアが以前ほど機能しない現状において、現実に効果がある手法を多数学び、ブームを作る手法を模索したいと考えています。

データ・アナリティクス入門

多面的視点で掴む成長のカギ

原因を探るヒントは? 原因を探る際には、与えられたデータのみならず、プロセス全体に目を向けることで、より深い示唆を得ることができます。このアプローチは、問題に関わる要素とそうでない要素を分ける「対概念」という考え方にも通じています。 A/Bテストの重要性は? たとえば、WEB画面のUIUX検討時には、これまで担当者が一案に絞ってリリースしていたため、思い描いた効果が得られなかったという事例があります。今後は、複数の施策を同一条件下で比較するA/Bテストを活用し、データに基づいて顧客に響く施策を選定する手法に切り替えていきます。 営業プロセス見直しは? また、営業活動による収益最適化のデータ分析では、営業プロセスが曖昧に分類されていたため、正確な要素抽出が困難でした。そこでフロントメンバーへの丁寧なヒアリングを実施し、プロセスを適切に分割することで、各要素を明確に特定し、分析精度を向上させています。 テスト実施の秘訣は? さらに、A/Bテストの実施にあたっては、期間設定や施策パターン数の考慮が重要なポイントとなっています。これらの条件をどのように整えるかが、テストの効果を左右する鍵となるでしょう。

「分析 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right