データ・アナリティクス入門

ロジックツリーで見えた解決の道筋

問題解決の第一歩は? 優先度や重要度が高い問題を選び、結果から要因を抑えることが重要です。以下のプロセスに沿って進めます。 まず、現状把握です。直面している課題や状況を明確にします。次に、原因の特定を行い、問題箇所を絞り込み、その原因を分析します。最後に、原因に対する有効な解決策を考えます。 多様な視点を持つ意義とは? この一連の流れをスムーズに行うためには、もれなくダブりなく、意味のある分け方が必要です。そのためには、多様な視点や切り口を持つことが重要です。 経験に頼る危険性は? 長い間仕事をしていると、経験や勘に頼りがちですが、ここでは必ずしもそれが最善策とは限りません。プロセスを再確認し、思い込みを排除するために要素を分解し、状態を把握して、問題を多く出すことが求められます。 ロジックツリーの活用法は? そのために、ロジックツリーを使用する機会を増やしていくことが有効です。実際の職場で何が起きているのかを確認するためには、課題をロジックツリーを用いて整理し、自分が把握できていない部分を確認することが重要です。 問題の優先順位をどうつける? その上で、優先度や重要度が高い問題を明確にして対策を立てることが必要になります。

データ・アナリティクス入門

訪日旅行を再考する戦略の鍵

学んだ知識は有効? 7月にマーケティング入門と戦略思考入門を受講した経験があり、今回のGAiLの課題ではこれまで学んだ内容とデータ・アナリティクス入門で学んだことが融合し、スムーズに取り組むことができました。 旅行商品の問題点は? 私の所属する訪日旅行のチームでは、アメリカの旅行会社と協力して訪日旅行商品を企画開発し、仕入れや手配、受客対応を行っています。しかし、現状の訪日旅行商品は基本的に東京・京都・大阪の周遊ツアーに偏っていて、旅行者にも受入先にもあまりメリットがないオーバーツーリズムの問題が深刻化しています。この現状をどうにか打破し、解決策を導くために「3W1H」を活用して考察していきたいと思います。 観察の視点は何? まず、日常で目にする商品やサービスを観察するときに、それがなぜヒットしているのか、その背景を考えることを心掛けています。具体的には、商品やサービスが誰に向けられているのか、どのようなニーズを満たしているのか、セールスポイントは何か、という要素を分析します。また、日本人が感じる日本の魅力と外国人が感じる魅力にはしばしば隔たりがあるため、日本政府観光局のデータと海外メディアのデータを比較分析し、観光素材の調査を進めています。

データ・アナリティクス入門

戦闘機も驚く分析の力

分析の本質を問う? 分析においては、情報を分類し比較することが基本であり、目的は人が考えるものであると実感しました。データに存在しない要素についても推測しながら考える必要があり、戦闘機の例を通じてその重要性を感じました。仕事に活かすためには常に目的を忘れず、何のために分析を行っているのかを明確にし、仮説を常に立てることが求められます。また、仮説を立てる際にはラテラルシンキングの発想も必要だと感じています。 人事データの壁は? 人事領域のデータを取り扱う際、定量化が難しい項目が多い点に気づきました。そのため、データの収集方法から見直し、定量データとして分析できるよう設計することが必要であると考えます。このアプローチにより、あいまいな感覚で当たりをつけるのではなく、常に仮説を持って検証を進めることができると感じました。 目的再確認の意義は? さらに、データ分析を行うにあたり、何のために分析をするのかという目的を明確にすることが肝要です。目的に沿った設問項目の設定と、得られた結果からどういった提言を行うかをしっかりと考える力が必要だと感じました。分析すること自体が目的化しないよう、定期的に目的を振り返る時間を持つことも大切だと改めて思いました。

データ・アナリティクス入門

実践で感じたABテストの奥深さ

テスト手法のメリットは? ABテストは、参加者をA群とB群に分け、同時期に検証を行う比較手法であると学びました。この手法は工程が少なく、比較や分析が容易である点が大きなメリットです。しかし、正確な結果を得るためには、比較ポイントを明確に設定し、その他の要素を同じ条件に統一することが重要です。実施時期をずらしたり、多くの異なる要素を入れてしまうと、正確な比較ができなくなるため注意が必要です。 接触率検証の進め方は? 顧客への電話による接触率の検証にもABテストを適用しています。具体的には、予測ツールを用いて算出した接触率が最も高いとされる時間帯と、ランダムに行った場合の接触率を比較することで、予測ツールの効果を測定しています。また、手紙やSMSの文面案についてもABテストを実施し、より効果の高い方法を見極めています。 テストテーマはどう決める? ABテストの導入にあたっては、まずテストのテーマとターゲットを明確に決定することが重要です。テストテーマは業務目標に直結していることを意識し、ターゲットは一つの要素に絞るように確認します。さらに、比較する際には、データ数、期間、手法が全て同一であるよう計画を立て、正確な検証ができるよう努めます。

データ・アナリティクス入門

小さな実験から大きな発見

原因分解はどうする? 問題の原因を明らかにするためには、まずプロセスに分解することが重要です。また、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが求められます。 テスト実施はどう? ABテストは、条件をできるだけ揃えて比較する有効な手法です。実施する際は、まず目的や仮説を明確にし、検証項目をしっかり設定することが大切です。さらに、テストは1要素ずつ行い、複数の要素を同時に検証する際は他の手法の検討が必要です。加えて、同一期間で実施することでテスト要素以外の環境要因の影響を最小限に抑えることが可能となります。 検証法はどう考える? 広告効果の検証においては、CVポイントやKPIに応じて適切な検証方法が変わります。実際にABテストを実施する場合もあるため、どのポイントを検証するかという仮説設定が非常に重要です。 効果はどこで現れる? 現在、広告効果の検証と分析に活用しているソリューションがあり、さらに新たなソリューションの開発も進めています。両方のソリューションを同時に走らせることで、どのKPIやCVポイントで新しいソリューションの効果が発揮されるかをABテストによって検証する絶好の機会だと考えています。

データ・アナリティクス入門

データ分析の魅力に触れる旅

なぜ目的を決めるのか? 「分析とは比較なり」という言葉が分析の基本を表しています。まず、比較を行うための目的をしっかりと決定し、その目的に合った適切な比較対象を選ぶことが重要です。そして、得られた比較結果をどのように視覚化・言語化して伝えるかも、分析の重要な要素です。これらが全体的に連携し、一つの体系としてまとまっていることで、分析は効果的に行われます。各ステップで適切な判断を行うことにより、データ分析は精度を上げることができます。 有効なデータの活用法とは? プロジェクトの進捗状況の把握や遅れの可視化と原因分析、製品の製造データの分析、それを基にした工程改善案の提案、さらに最終製品の性能・品質データの分析とそのトレンドの原因の把握など、それぞれの場面で明確な目的と最終的な活用イメージを持って分析を行うことが重要です。これによって、効果的なデータ分析の結果を示すことができるでしょう。 データ収集から始めるには? 特に最終製品の性能・品質データの分析には豊富なデータがあり、因子もある程度特定されています。自らがデータを入手しやすい立場にあるため、早速データを集めて分析を進めていこうと思います。まずはデータの収集から始めてみます。

マーケティング入門

質と戦略で顧客を魅了する

マーケ戦略の意義は? マーケティングは、顧客が満足した状態で利益を得る手法であるという定義が、とても印象に残りました。特にエンターテイメント産業では、作品や商品の質の良し悪しを重視してきた自分にとって、「顧客の行動変容を起こせたか」という視点は、今後の行動指針として重要になりそうです。 複数アプローチは? 製品を顧客に購入してもらうことで利益を生み出す業態であるため、マーケティングでは複数のアプローチが必要であると感じました。たとえば、①顧客満足度が高い質の高い商品を作る視点と、②出来上がった製品をいかに多くの人に届けるかという視点とがあり、さらに他のフェーズも存在します。それぞれのポイントで成功確率を上げるために、マーケティングの知識をどんどん増やしていくことが、利益貢献の機会を拡大すると考えています。 顧客分析はどう? また、第一のフェーズでは顧客分析を通じて、クリエイティビティ以外の要素を補完し、武器とすることができるため、常に具体的な顧客像を意識しながら業務を進めたいと思います。第二のフェーズでは、マスメディアが以前ほど機能しない現状において、現実に効果がある手法を多数学び、ブームを作る手法を模索したいと考えています。

デザイン思考入門

受講生が綴る成長と共感の物語

デザイン思考はどう変わる? デザイン思考は、当初は外見や部分的な要素に焦点が当てられていましたが、徐々に全体設計へのアプローチへと発展してきました。お客様への共感を軸とすることで、顧客にとって本質的な課題解決を目指す姿勢は、単に技術的に高度であるだけではなく、実際に役立つ製品やサービスへと結実するために不可欠です。 技術進歩と課題は何? また、AIの進化により、ITシステムの試作が容易になったため、全体プロセスの回しやすさは向上しています。しかしながら、細部の制御が難しい現状では、あと一歩の実現に大きな工数と時間が必要となるケースも見受けられます。加えて、顧客と製品やサービスの提供者はそれぞれ別の利害を持つため、どうしても緊張関係が生じるという課題があり、こうした点を含めた総合的な方法論の整備が望まれます。 試作と提案はどう進む? 今後は、ChatGPTなどを活用して顧客の発言から課題やソリューションを分析し、その結果を基にReplitで試作案を作成、実際に顧客に提示するという流れが実現できるのではないかと考えています。授業を通して、こうしたプロンプトの設計など、具体的な手法を確立していくことが目標です。

データ・アナリティクス入門

自社WEBメディアの問題解決に挑むリアルな試行錯誤

ミュージックスクール問題解決の手法は? 実際にミュージックスクールの課題をデータを用いて分析し、解決策を検討したところ、リアルな問題を考えることで、自分に置き換えリアルにイメージできるようになってきたと感じています。問題を問題解決ステップのWhat、Where、Whyまでを整理する習慣を身につけたいです。 WEBメディア運用でのベストプラクティスは? 私は自社WEBメディアの運用に従事しているため、以下のアプローチを取りたいと思います。まず、現状における問題を特定し、What、Where、Why、Howの各要素に分けて進めます。そして、A/Bテストやサイト上でのサムネイルの策定に時間をかけ、広告でのABテストにも時間をかけることで、効果を出していきたいです。 課題解決のプロセスで重要なことは? 原因をプロセス分解し、ボトルネックをきちんと把握することが課題解決の近道だと思いました。また、正解がない場合も広い視野を持ち、トライアンドエラーの精神で複数の選択肢を視野に入れて構築していくことが重要だと考えます。短期・長期のモデルを検討しながら、結果をしっかり分析し、最大限の効果が現れるように見極められるようになりたいです。

クリティカルシンキング入門

データ分析で見つけた新たな視点

データ加工とMECEは? データの加工や分け方、そしてフレームワークについて学びました。提示された情報をただ受け入れるのではなく、その背後に隠された情報を見抜く重要性を認識しました。特にMECEの活用方法について考える機会がありましたが、必ずしもMECEにこだわる必要があるのかという疑問も感じました。MECEが手段であり目的でないことを意識することが大切です。 戦略調査の目的は? マーケティング戦略の策定では、現在のサイトへの流入経路や登録経路を様々な角度から調査しました。特に、業歴が長い会社の場合、リピーター率が高いのではないかという仮説を立てて調査し、既存顧客からのフィードバックにどのような特徴があるのかも分析しました。また、成果を上げた新人の要素を細分化して理解を深めました。 連携の秘訣を探る? 最初に関係各所と連携して分析プロジェクトを立ち上げました。プロジェクトに興味や共感を持った人々から順に説明の時間を頂いてミーティングを行い、データ分析によってどのような示唆が得られるかについて話し合いました。その過程でスモールウィンを設定し、うまくいった内容を共有してより多くの人々を巻き込んで進展を図りました。

クリティカルシンキング入門

正確な思考が切り拓く未来

正確さの意義は? 文章を書く正確さの重要性を実感し、その考え方を学ぶことができました。主語や述語の大切さ、さらには説明の際に要素を分解して考える方法も理解でき、これらは反復練習でしっかり身につけたいと思います。 分解法は役立つ? また、分解して考えることは、営業報告においてどこに問題があり、なぜその問題が起こっているのかを分かりやすく伝える上で非常に役立つと感じました。今後、実戦でこの手法を積極的に活用していきたいです。 戦略策定はどうする? 今回の学びは、来期に向けた戦略策定の際、現状の課題整理や問題点の把握に大いに活かせそうです。たとえば、売上分析から伸びている事業とそうでない事業が明確になったことを受け、伸びている事業の人材を強化する方針について、今回の学びをもとに説明文を作成していくつもりです。 報告会に向け準備は? また、6月に控えた来期報告会に向けて、まず今月は数字をまとめ、1週間で分析を行い、課題を見える化する準備を進めます。さらに次の一週間で必要な施策を検討し、文章にまとめる予定です。最終的には、その文章の内容が正しいかどうかを今回の学びを振り返りながら確認していきたいと考えています。

データ・アナリティクス入門

データに潜む真実を見抜く技術

視覚的要素の活用法は? 目は最高の分析ツールです。顧客へのプレゼンでは、すぐに理解できるグラフや表を用いることが重要です。特に、目の前にあるデータや事象にだけ引っ張られず、見えないものも比較対象として考慮することが肝心です。分析の着眼点としては、逆説的な発想を持ち、新たな仮説を立てられるようにすることで、重要な点を見落とさない思考を身につけることが求められます。 データ活用で成果を上げるには? 現在の業務においては、データを活用して顧客の課題解決を図っています。営業活動においても、新規顧客の案件獲得やリード獲得にデータを活用できると考えます。しかしながら、広告媒体や営業ツールの選定では、比較対象のデータがフェアに整わないことがあり、会社との相性も考慮する必要があるため、仮説の設定やデータの加工が難しいと感じています。 目的設定の重要性とは? そこで、目的をしっかりと設定することが重要です。顧客の要望をそのまま受け取るのではなく、意思決定や課題解決にどうつながるかを見極める必要があります。また、仮説の設定については、見えているデータ以外にも比較や仮説の対象となるものがないかを意識して考えることが求められます。

「分析 × 要素」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right