データ・アナリティクス入門

探求の視点:問題解決の新たな扉を開く

プロセスをどう分けるか? 問題の原因を追求する上で、プロセスを分けることにより、より精度の高い分析や仮説構築ができることを学びました。また、GAILの解説にあった「思考の範囲を広げてみる」ことは新しい発見でした。仮説構築や原因究明を行う際、自社や自組織の問題に目が向きがちですが、社外の要因にも原因があるのではないかという視点が新たな切り口を与えてくれることを実感しました。早速、日々の業務にも逆説的仮説を取り入れてみたいと思います。 評価分析の注意点は? 今週の演習で出てきた評価分析は、これまでも実践してきましたが、今後も活用していきます。注意点として、評価項目の設定や重みづけに気を付ける必要があると感じました。評価項目や重みづけによって、評価対象者によって結果が異なってしまうことがあるので、実際の業務では自分一人で評価項目を設定せず、他者の視点や意見を取り入れて設定し、評価を行っていこうと思います。 次の四半期に向けた準備 今月で第三四半期が終了し、来月から第四四半期が始まります。10月頭にあるQuarter Business Reviewに向けて、今四半期の結果の分析や問題点、改善が必要なポイントを洗い出し、次の四半期へのアクションプランを策定するつもりです。チームや各メンバーにおいて傾向があるので、What、Where、Why、Howの各ステップを意識し、分析、原因究明、改善策を見出していきます。各分析結果は組織および該当の個人に共有し、フィードバックをもらおうと思います。

クリティカルシンキング入門

IT界のPMが直面したロジカルシンキングの壁と克服法

バイアスをどう回避する? ロジカルシンキングで重要なポイントとして、バイアスを回避することが挙げられる。バイアスとは、自分の信念や意見を支持する証拠に重点を置き、それ以外の情報を無視したり軽視したりする認知の偏りのことだ。これを避けるためには以下のことを意識することが大切である。 まず、論拠を立てて思考すること。また、具体的な問題や意思決定においては、主張や仮説を立てる際にその根拠や理由を明確に整理し、客観的な分析を行うことが求められる。 効果的なコミュニケーションとは? 私自身、IT企業でPMを担当しているが、他チームへ何かを依頼する際には、自分のチームの要望だけでなく、相手側に有利となる情報も伝えるように意識している。逆の立場になって考えたとき、相手の言い分が合理的であるほど納得感を得られるケースが多いということに気付いたからだ。また、同じことを言っているのに人によって理解度が異なるのは、相手の考え方のプロセスや論拠が原因であると考えた。今回の学びを通じて、この点を改善したいと思う。 具体的には、まず会議での自分の発言パターンを再度分析してみること。そして、結論を出すことだけにフォーカスせず、論拠や考え方のプロセスを意識してから発言すること。さらに、何事にもバイアスを意識し、一度出した結論に対してももう一度第三者目線で検討しなおすことが重要である。 論理的思考の実践方法 これらのポイントを実践することで、より論理的でバイアスのない思考ができるようになると期待している。

クリティカルシンキング入門

データ分析の一手間で見える世界

データをどう加工すべきか? 与えられたデータをどのように加工すればよいか、その考え方を学ぶことができました。大切なポイントは以下の3つです: 1. 与えられた表をそのまま見るのではなく、まず加工を考える。 2. 絶対値ではなく相対値でもデータを見る。 3. 一手間加えてグラフ化し、視覚的にわかりやすくする。 データ分析の仮説立て方とは? これらを実行する上で重要なのは、仮説を立ててデータを分解することです。特に、MECE(漏れなくダブりなく)な分解を習得することが求められます。 可視化で何を達成できる? 私は、売上や営業スタッフ一人ひとりの実績やシェアを見ることが多く、その際にフィードバックを行う機会があります。ただ結果を振り返るだけでなく、もう一歩踏み込んだフィードバックができるように、データを可視化したいと考えています。可視化する際には、様々な切り口でデータを分解し、仮説を立てて分析します。もし仮説が結果に結びつかなくても、トライ&エラーを繰り返して原因を追求します。 今後の目標は? 今後の目標は以下の通りです: - 毎月の数字の振り返りの際に、特定エリアの商圏分析と購買年齢層を比較し、問題の明確化と特定を行い、さらに原因追求のプロセスを明確化する習慣をつける。 - 営業スタッフへの数字振り返り資料を、次回の会議時にはグラフ等を用いて改訂してみる。 - 月間の実績確認において、各カテゴリーごとにチェックするだけでなく、その都度気になる切り口でMECE分解を行う。

マーケティング入門

受講生が伝える学びの軌跡

リサーチの必要性は? ある企業の開発事例から、まずリサーチ段階で潜在的なニーズを見つけることの重要性を学びました。真のニーズを引き出すためには、デプスインタビューやカスタマージャーニーの詳細な分析など、緻密な作業が必要であることが印象に残りました。 ニーズと強みはどう? 商品開発の段階では、潜在ニーズと自社の強みを掛け合わせることで相乗効果が期待できると感じました。同時に、消費者がどのようなブランドイメージを期待しているのかという視点を取り入れる必要があると気づかされました。特にネーミングに関しては、開発側が届けたいイメージよりも、消費者が直感的にイメージできる言葉が求められると考えました。 調査手法はどう? さらに、カスタマージャーニーのリサーチをより丁寧に行う必要性も感じました。過去のユーザーを数名ピックアップし、デプスインタビューを実施して真のニーズを明らかにすることや、業界サービスにおけるクライアントのペインポイントを探すことで他社との差別化を図ることが今後の課題です。 行動計画はどうする? 具体的なアクションプランとしては、まず過去ユーザーの中から年齢層や職種ごとに3名のデプスインタビューを設定し(初めは5名から8名程度に声をかける)、次にデプスインタビューを通して転職活動に至るまでの行動背景やペインポイントについて再調査を行います。さらに、登録者が約2000名いるインスタアカウントを活用してインスタライブを実施し、ユーザーの生の声を収集していく予定です。

クリティカルシンキング入門

MECEで問題解決!実践的な学び

分析で重要なアプローチとは? 物事を分析する際に、売上高や入場者数の分解を行いました。この際、ただ機械的に分解するのではなく、仮説を持ち、短絡的に考えずに試行錯誤することの重要性を感じました。また、問題解決のステップとして「①問題の明確化」「②問題個所の特定」「③原因の究明」「④解決策の立案」があることを改めて認識しました。MECE(Mutually Exclusive, Collectively Exhaustive)は特に②③④の解決ツールとして有効です。MECEのアプローチには、層別分解、変数分解、プロセス分解があり、それらを自然に思い浮かべられるように意識しています。 上位層に報告する際のポイントは? プロジェクトで問題が発生した際、現場以外の社内の上位層に報告するときに、全体を俯瞰した整理が求められます。現場の部門は実情を把握しているため、自分の見えている範囲の細かい部分を報告しがちですが、これでは上位層が判断や解決策の妥当性を審議できません。全体を俯瞰して説明する上で、MECEのフレームワークは重要だと感じます。普段から業務全体を見渡す習慣をつけておかないと、問題解決のステップに進むことができない危険性を感じています。 作業見積工数の妥当性をどう示すか? 現在、顧客からプロジェクトの作業見積工数の妥当性を問われており、MECEで説明が求められています。通常作業と特別作業の区分、お互いの作業に重複がないかを確認するために、MECEの層別分解を実施してみています。

データ・アナリティクス入門

MECE思考で見える未来

情報で迷う理由は? データ分析の際、目についた情報に振り回され、時間がかかってしまうことや、都合の良い情報ばかりに頼って決め打ちになってしまう問題を感じています。そこで、MECEの考え方を取り入れることにしました。 MECEの切り口は? MECEには、全体を複数の部分に分ける層別分解と、全体を構成する変数に分ける変数分解という2つのアプローチがあります。たとえば、層別分解では年齢、季節、販売チャネルなどで分析し、変数分解では売上=客単価×客数や売上=商品単価×販売数のように捉えることができます。 分解できないのは? また、MECEに分解できない例として、モレなしでダブリがある、モレありでダブリがない、モレありでダブリもある場合が挙げられます。今後は、売上分析や業界、顧客分析、さらには業務の課題解決にもこの考え方を積極的に活用していきたいと考えています。 データ加工のポイントは? 現在、売上分析データを加工中であり、来週からはMECEの視点を取り入れたデータ加工を進める予定です。加えて、ロジックツリーを書き出すことで思考のスピードアップを図りながら、業務の課題解決に向けた取り組みも強化していきます。 情報取得の見直しは? 以前、情報の取得に時間がかかることや、都合の良い情報だけを集めて決め打ちしてしまう点に気がつきました。そのため、現在作成中のデータをもう一度フラットに俯瞰し、MECEを意識したフレームワークを使って再検討に努めています。

マーケティング入門

顧客の痛みを掴む実践の軌跡

顧客ニーズは何が鍵? ある企業の成功事例から、以下の3点の重要性を学びました。まず、顧客の真のニーズをしっかりと捉えること、次に覚えやすくユニークで用途を連想しやすい商品名を考えること、そして自社の強みを把握し効果的に活用することです。 本質はどう見抜く? また、単なる問いかけだけでは十分なニーズは掴めず、行動観察や深掘りインタビューを通じて、より本質的なニーズを探る手法の重要性を実感しました。 事業成功の秘訣は? さらに、曖昧な顧客ニーズに基づいて新しい事業を展開すると、成功の可能性は低くなる恐れがあります。そこで、単なるニーズにとどまらず、顧客の不便さや「痛み」に注目することが必要です。これを明らかにするためには、カスタマージャーニーを丁寧に分析することが効果的であると感じました。 ネーミングはどうする? これらの学びを通して、今後はイベントタイトルやサービス名を考える際に、連想しやすく分かりやすいネーミングを意識していきたいと思います。また、顧客のペインポイントの把握に努めるため、カスタマージャーニーのリサーチと分析を徹底し、真のニーズおよびペインの解明に取り組みたいと考えています。 チームで意識を合わせる? まずは、今回の学びを業務を共にするメンバーと共有し、チーム全体で理解を深める状態を作り上げたいです。その上で、カスタマージャーニーのリサーチ方法を見直し、真のニーズを捉えるための取り組みを進めていく所存です。

データ・アナリティクス入門

ひらめき!挑戦の軌跡

問題解決の狙いは? 問題の所在を明らかにするためには、セグメンテーションや条件分けが重要です。まずは層別分解に取り組み、プロセスのどこに弱点があるかを見極めることが求められます。こうすることで、解決策が散漫にならず、問題の本質にフォーカスできます。 仮説はどう洗い出す? 仮説の洗い出しは容易ではなく、思いついたことをそのまま書き連ねても網羅性が得られにくいという課題があります。そこで、まずは核となるアイデアを抽出し、それを一般化したうえで再び具体的な形に落とし込む方法が有効です。さらに、対となるカテゴリも設定することで、フレームワークを活用した仮説の構築が可能になります。 データ活用はどう進む? また、「データドリブン経営」の推進に向けては、必要な検討やデータ収集、分析、結果の共有が事業改善の鍵となります。基礎的な経営結果データを効率的に可視化し、顧客タッチ数などの経営結果を動かすドライバデータを補足することが大切です。これにより、どのような意思決定を行うか、またそれに必要なデータが何かを明確にすることが可能になります。 売上分析のポイントは? さらに、売上分析環境の構築にも注力する必要があります。たとえば、PowerBIを活用すれば、各メンバーが見たい切り口でデータを分析できる環境を整備できます。具体的には、商談数、顧客タッチ数、提案数、商談期間などのデータを取得し、可視化することで、より精度の高い意思決定を支える基盤が構築されます。

アカウンティング入門

資金計画とB/Sで描く未来への道筋

貸借対照表とは何か? 貸借対照表(B/S)について学びました。B/Sは左右に分かれており、左側が資産の部、右側が負債の部です。この両者は必ず一致してバランスしています。資産には流動資産と固定資産があり、負債には流動負債と固定負債があります。それぞれを区別するポイントは、1年以内に現金化または返済されるかどうかです。 事業資金の準備はどう進める? 次に、事業開始にあたって必要となる資金の準備について考えました。具体的にどのくらいの資金が必要なのかイメージし、その資金を自己資金で賄えるのか、それとも借入が必要なのかを判断します。また、借金することのリスクや、無借金経営の可能性についても考察しました。 B/S分析から何が見える? 自社のB/S確認と分析も行ってみました。様々な業種や会社のB/Sを確認することは有益で、特に流動資産、固定資産、流動負債、固定負債に実務でどう当たるのかを具体的に考えることが重要です。例えば、支社のリフォーム費用や備品の購入はどの項目に該当するのかを検討しました。また、自社の無形固定資産であるソフトウェア製品が利益を生む仕組みにも関心を持ちました。 公開情報から何を学ぶ? 自社の財務諸表はすべて公開されているわけではありませんが、過去に開示された情報を確認しました。これにより、公開された情報や金額がB/Sのどの項目に該当するのかを分析しました。役員に確認し、過去分で開示可能な決算書があるかどうかを調査することも行いました。

マーケティング入門

セグメンテーションで未来を切り拓く

強みの組み合わせで差別化を図るには? 勘所を探す際のポイントとして、「強みを複数組み合わせて差別化できる領域を探す」「利用場面を具体的にイメージし、顧客にとっての価値を見つける」「ターゲットと提供価値がつながるプロモーション施策を打つ」という3つがあります。これらは、自社ビジネスだけでなく、自己ブランディングでも役立ちそうです。 セグメンテーションとターゲティングとは? セグメンテーションやターゲティングを理解できたことは大きな進歩です。今までは漠然とした切り分けしかできませんでしたが、セグメンテーションの切り口やターゲティングの評価基準である6Rを活用していきたいです。ポジショニングを決める際には、2軸に絞って顧客目線や客観的な視点で判断することを心がけたいです。 どのように業務効率化を実現? 私はバックオフィス業務に従事しているため、本部や営業店舗が顧客になります。そこで学んださまざまな変数を使い、効率的に切り分けて考えてみたいです。複雑な状況でも、「ないない思考」に陥らず、シンプルに分析できるよう、フレームワークを活用していきたいと思います。 STPをどのように活用する? セグメンテーション、ターゲティング、ポジショニング(STP)を明確にする習慣を身につけたいです。普段目にする広告や商品を見て、それらのSTPを予想し、その考え方を身につけていきたいです。特に、訴求ポイントの2軸を感じ取れるように意識していきたいと思います。

クリティカルシンキング入門

データ分析で新発見!視野を広げる方法

データの意外な発見は? 数字を分析する際、単に数値を眺めるだけでなく、以下のような手法を用いることで新しい発見があることを理解しました。まず、グラフ化したりパーセントに変換することが有効です。また、データのグルーピングも年齢帯を変えるなどの工夫が必要です。さらに、複数の切り口から分析し、結果を疑いながら挑み続けることが重要です。 新たな視点は現実? このようなマインドを持つことで、特徴が見えなかったということ自体が「新しい発見」であると理解することができます。そして、新たな切り口が必要だと気づくこともできます。したがって、様々な方法でデータを分解し、分析していくことが脳の考え方をポジティブに変える重要なポイントだと学びました。 数の理由は何だ? 具体的には、「数」を扱う場面が多いため、データを様々な方法で分解し、それぞれの要因を特定していきたいと考えています。例えば、来場者が増えた原因や、顧客が不満を持つプロセス、売上向上の要因を詳細に分析したいと思っています。 多角的視点は十分? 今週中に、現在行っている来場者数の分析を一度見直し、見えているものだけで十分なのか、または他に見えてくるものがあるのかを検討したいと考えています。現時点では、業種や職種、来場日時といった切り口で分析していますが、事前登録の時期やセミナーの申し込み状況、WEBアクセスの頻度など、他にも試すべき切り口が思い浮かぶので、それらを用いて分析を試みる予定です。

クリティカルシンキング入門

データ分析で見つける戦略のヒント

分析の切り口は? データ分析において、「加工の仕方」「分け方の工夫」「複数の切り口で分ける」という3つのポイントが重要です。分析の結果として何も見えない場合でも、それは失敗ではなく、他の切り口に原因の手がかりがあることを示していると感じました。迷って時間を浪費するよりも、実際に手を動かすことで何かを見つけ出せることがある、という点も非常に心に残りました。また、「MECE」(漏れなくダブりなく)で物事を解析するときには、まず「全体を定義する」ことが重要です。この点についても大きな学びがありました。「漏れなく」という作業がとても大変だと思っていましたが、全体を定義することで範囲を限定できるという考え方に納得しました。 課題はどう解決? 次期中期経営計画で示された経営課題を解決するために、自部門の責任と役割を整理する際にこの考え方を活用したいと思っています。自部門の現状を分析し、その結果に基づいて短期的および中長期的な戦略や戦術を検討します。まず、雑多な業務を抱える自部門を大きく分類し、それぞれを1つの「全体」と捉えて、「MECE」により分析と戦略の検討をしてみたいと考えています。 実行への一歩は? 今進めている、来期の事業計画策定に向けた自部門の現状分析や戦略立案においても、「MECE」を用いた「プロセス分解」を試してみようと思います。特にWEEK2で学んだ重要なポイントを整理して書き留め、繰り返し確認しながら実行に移そうと考えています。

「分析 × ポイント」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right