データ・アナリティクス入門

データに基づく問題解決法を学んだ充実の時間

分析の基本を理解するには? 講座全体を通して学んだことのポイントは以下の通りです。 まず、分析についてです。分析とは、比較することと同義です。そして、問題解決のプロセスにおいては「What→Where→Why→How」の順序で進めることが重要です。平均値を見る際には、そのばらつきにも注意を払いましょう。対策を決定する際には固定的にせず、柔軟に対応することが求められます。また、生存者バイアスに影響されないように注意し、生存者と非生存者の両方に目を向け、データの分布全体を分析する必要があります。結果を他人にわかりやすく伝えるためには、データのビジュアル化が有効です。 戦略策定で役立つ方法は? 次に、下半期の戦略策定です。クライアントの下半期戦略を作成する際に、講座で学んだ分析のフレームワークを活用することができます。 データをどう活かすか? さらに、分析結果の資料への落とし込みについてです。クライアントの意思決定を支援することを目的として、データの見せ方に工夫を凝らします。 データ分析の効率化を目指すには? データ分析のやり方の向上も重要です。AIなどのツールをうまく活用することで、精度の高い分析を短時間で実施します。必要最低限の情報をもとに素早く答えを出して実行する。このサイクルを多く回すことで、最短で最大の効果を生み出すことが可能です。 効果的なデータ伝達法は? 最後に、データ分析結果の伝え方についてです。対峙する相手は数値分析を本職としていないことが多いので、単なる数値の伝達だけでは不十分です。データを可視化し、クライアントの課題を踏まえたフォーマットに変換します。クライアントが知りたいのはビジネス上のインパクトです。そのため、ビジュアルで見せたり、ビジネス言語で表現して、一目で理解できるようにすることが重要です。

データ・アナリティクス入門

生の声で伝える挑戦日記

代表値と散らばりとは? 大量のデータを分析する際には、中心的な特徴を示す代表値と、データのばらつきを示す散らばりの両面からアプローチすることが重要です。代表値には、単純平均、加重平均、幾何平均、中央値があり、それぞれの特性を理解した上で適切に活用する必要があります。一方、データの散らばりを把握するためには標準偏差が用いられます。標準偏差とは、平均値から各データがどの程度乖離しているかを示すために、各乖離の二乗和をデータ数で割った値の平方根を意味します。 看護国家試験対策はどうする? 看護師国家試験対策では、4年生進級までの過去の成績を分析し、不得意な科目や分野を特定した上で重点的に補強する方法が提案されます。また、入学試験志願者の選抜においては、成績、出席日数、欠席理由、さらには高校卒業までの活動や志願理由を詳しく分析し、入学前教育に効果的に活かすことが期待されます。 早期支援の進め方は? さらに、早期からの継続的支援として、1年生前期の履修成績を把握した上で夏休み中に補習を実施し、後期終了後にも同様の取り組みを行うことが検討されています。これを各学年で実施することで、4年生にまとめて行う短期間の国家試験対策よりも、より効果的な成果が見込まれます。この取り組みは、大学の教務委員会や国家試験対策委員会に提案し、全教職員の協力のもと、実施体制と行動計画を整えることが前提となります。 書類評価の観点は? 加えて、現在提出される入学試験受験者の書類について、評価の見方や押さえるポイントを明確にすることが提案されています。これにより、入学制度に対するリアリティショックを軽減し、学力不足の傾向に対しても適切な対応策を講じることが可能になると期待されています。現時点では、入試広報部と連携してこの問題に取り組む方針が進められている状況です。

データ・アナリティクス入門

現状と向き合う、理想への一歩

ありたい姿とギャップは? 今回の学びでは、問題解決プロセスの重要性を改めて実感しました。まず、「ありたい姿」と現状のギャップを明確にすることが、課題の適切な設定につながると感じました。これはデータ分析のみならず、さまざまな業務に応用できる考え方です。 どう課題を分解する? 課題を分解する際には、各要素に分けるためにロジックツリーを活用し、MECEを意識して重複や抜け漏れがないように整理する手法が非常に有効でした。また、問題解決のプロセスをWHAT(何が問題か)、WHERE(どこに問題があるか)、WHY(なぜ問題が生じたのか)、HOW(どのように解決するか)の4つのステップに分けて考える方法は、実践的かつわかりやすいと感じました。 現状と理想はどう? 分析を始める前に現状と理想のギャップを把握することで、無駄な作業を省き、重要なポイントに的を絞った課題設定が可能です。他の人が設定した課題も一度自分で見直す習慣をつけることで、見落としが防げると考えています。 目標はどう捉える? また、自身の目標設定において、ただ数値を追うのではなく「あるべき姿」を明確にすることが、戦略的なアプローチへとつながります。たとえば、ソフトウェア導入時には現状の課題を整理し、導入によって解決すべきポイントを明確にすることで、より合理的な選定ができると実感しました。このスキルを業務全体に活かすことで、より本質的な課題解決が可能になるでしょう。 手法はどう共有? 最後に、今回学んだ問題解決の手法を部内で共有するつもりです。今までのケースバイケースの対応を見直し、データをもとに客観的かつ一般的な対策を検討するアプローチの普及を目指します。ただし、過去に特定の調査で効果が得られなかった経験もあり、状況に応じた柔軟な対応が求められることも実感しています。

クリティカルシンキング入門

データ分析のコツで業務効率アップを実感

数字分析で見える傾向は? 数字をいくつかのパターンでグラフ化し比較すると、傾向や特徴がつかめることがわかりました。知りたい情報に対して、意図的に複数の分析軸が必要であることも理解しました。特に一番の気づきは、一つの分析結果だけを見てすぐに結論を出すのは危険だということです。急ぐあまりに、ついやってしまいがちですので気を付けたいと思います。 分解時の注意ポイントは? また、切り口を考える際のポイントとして、全体を定義したうえでモレなくダブりなく分解していくことが重要だと感じました。意識してチェックしていないと、歪みが出ることに気付けません。 課題の本質をどう見抜く? 自分の業務では、お客様アンケートなどを整理する際の切り口を設定するときに使えると思いました。さらに、原因不明な状態で課題改善を依頼された際にも有効だと感じます。例えば、上司から「この課題はおそらくこの辺に原因があるからこの方向性で解決してほしい」と相談され、現場では「ほんとの原因はそこではないと思う」という意見の乖離があった際、どのように調整すればよいか悩むことがあります。そのようなときに、要素分解を用いて課題の本質を明らかにすることができると思いました。 精度の高い分析へ向けて 現在推進しているサイトのUI改善は、ヒアリングを中心に改善施策を検討していますが、今一度データの分析を掘り下げてみたいと思いました。その際に以下の点を実施しようと思います。 - 切り口を複数用意するために、分析に必要なデータを多く収集する - 手を動かして分解する - どんな切り口が分析に役立ちそうか関係者にもヒアリングしてみる - モレなく、ダブりなくの視点で問題ないか、分析の切り口を周囲の人と意見を聞き確認してみる 以上の点を意識して、より精度の高い分析を行いたいと思います。

クリティカルシンキング入門

伝わる文章、ヒント満載!

文章作成の何を意識? 文章を書く際に、「主語」「述語」「文の長さ」などの要素に注目することで、読み手にわかりやすい文章が作れることを学びました。また、誰に向けて書くのか、読み手がどのような背景を持つのかを意識し、適切な理由付けを行うことで説得力を高められると感じています。 説得力はどう磨く? また、直接の対話や文章で情報を伝える際には、複数の根拠を整理し、どの理由が説明に最適なのかを検討することが大切だと実感しました。そのための手法として、ピラミッドストラクチャーを活用し、まずは書き出す習慣を身につけることが効果的だと思います。 業務伝達はどうする? 実際の業務では、誰に対して伝えるかによって活用方法を工夫する必要があると感じています。たとえば、Team内や1on1のシーンでは、伝えたい内容を根拠に基づいて整理し、順序立てて説明することを心掛けています。その際、対面での口頭説明が適しているのか、メールやメッセージでテキスト化した方が説得力が増すのか、ケースバイケースで使い分け、または併用するように努めています。 課題管理のポイントは? Teamメンバー個々の成長課題が異なるため、具体的な課題を書き出し、ピラミッドストラクチャーを活用して適切なマネジメント方法を見出すことも重視しています。同様に、具体的な営業戦略を立案する際も、達成すべき問いを実現可能な行動レベルまで落とし込むため、何度も書き出して分析し、上司や同僚とのディスカッションを通じて新たな根拠や結論のアイディアを取り入れるプロセスが重要だと感じています。 キーメッセージは何? 最後に、ピラミッドストラクチャーを作成する際に、根拠としてどのキーメッセージを選ぶかで悩むことが多いです。皆さんがどのように工夫しているのか、ぜひ意見を聞いてみたいと思います。

戦略思考入門

集合知で描くSWOT活用の新視点

フレームワーク活用の理由は? フレームワークを知っているだけでは意味がありません。特にスタッフ部門では、直接的に活用できる場面は限られているように感じていました。しかし、具体的な活用ポイントや事例を学ぶことで、SWOT分析やその他のフレームワークも、読み替えや置き換えによって適用できる場面があるのではないかと考えるようになりました。 集合知はどう作用する? また、集合知の重要性も深く心に残りました。意見が食い違う場面は日常的にありますが、それを単なる困難と捉えるのではなく、多面的な認識が得られ、議論を通して考えが洗練され、抜け漏れの防止にもつながるというポジティブな側面に着目し、有難く享受していきたいです。 体制強化の再評価は? これから取り組みたいのは、現在の体制強化の進め方についてのSWOT分析を通じた再評価です。漠然と正社員を補充するだけでなく、効率と効果の両面で新たな気づきが得られるのではないかと期待しています。また、個々がプロとして働くことから、プロ集団として組織全体で取り組むというマインドチェンジも重要です。現状ではすべてをみんなでやろうとするのは難しいかもしれませんが、メンバーの負担を軽減し、集合知の重要性を訴えながら適切な雰囲気を作ることが必要だと考えています。これは長期的な課題かもしれませんが、戦略的に最短で進めることを目指します。 SWOT分析はどう機能? まずは自組織のSWOT分析を実施し、その結果を基に体制強化策の見直しを行いたいと思います。集合知を活かす組織づくりに向けては、この研修での学びや気づきを月次会議で共有することから始めたいです。また、私自身が「一緒に仕事をしたい」と思われるような人間性と振る舞いを心掛け、日々、明るく元気に取り組むことを意識していきたいです。

戦略思考入門

差別化の盲点を見つける学びの旅

顧客目線の重要性とは? 差別化について日々悩んでいたため、今週の学習は特に有意義なものでした。特に、自分自身ができていなかった点や気をつけたいポイントとして以下の点が挙げられます。 まず、顧客目線が最も重要であることです。そして、「この点は差別化できるのでは?」と思う点があったとしても、一度立ち止まって考える必要があります。それは、差別化できると考えた点が、別の業界で既に得意としている施策かもしれないからです。また、視野が狭いと感じた場合には、フレームワークを探して利用し、抜け漏れがないように活用することが大切です。そして、どんなに差別化できても永続的な優位性は存在しないため、常に考え続ける必要があります。 差別化ポイントをどう見つける? 実際、今週は差別化できるポイントを考えることが業務の一環でした。自社として「こうしたい」「ここが差別化できる」と思いがちだったところを、「お客様にとって」という視点を常に持つよう意識しました。また、「自社の強みって何なんだろう?」と悩み、3Cなどを用いて分析しても腑に落ちない部分がありました。この件に関しては、現在VRIO分析を用いてより明確な差別化ポイントを見つける努力をしています。 既に行っている取り組みとしては、VRIO分析があります。また、見つけた差別化ポイントをポーターの3つの分類に分け、どれに当たるかを理解し優先度をつけています。 来週の戦略は? 来週取り組むこととしては、当初考えた競合だけでなく、差別化ポイントを既に実施している他の競合がいないかも確認する予定です。また、ポーターの3つの分類に分けた差別化ポイントについて、実現性だけでなく他の視点からも検討し、優先度付けを行います。最後に、関係者と話し合い、多様な意見を参考により良い施策を検討したいと考えています。

データ・アナリティクス入門

データ分析の極意と失敗しない一歩

ステップを踏む重要性は? ステップを踏むことと全体像を把握することは大切です。MECE(Mutually Exclusive, Collectively Exhaustive)の視点で全体を捉え、すぐに行動するのではなく、熟慮することが重要です。現状把握、原因分析、目標設定、そして打ち手の流れを理解する中で、特に現状把握が最も重要となります。多様な切り口から複数の要因を見つけ出し、そこから原因を確定することが求められます。例えば、QCサークルのような取り組みが有効です。そして、問題解決の目的が達成されたかどうかを検証することも忘れてはいけません。 問題解決のパターンとは? 問題解決には二つのパターンが存在します。一つはあるべき姿と現状のギャップを埋めるもので、もう一つは将来的な目標を現状と比較し、その余白を埋めるものです。後者は単に正常に戻すだけではないという点がポイントです。 原因分析の力量が成功を決める? 私自身、仕事の中で問題を解決する手法を使用していますが、事故対応策の相談や質問を受ける際、絡まり合った要因を考慮しながら原因を探り、対策を講じています。問題が単純に解決できる場合もありますが、連鎖的に解決される場合もあり、対応策が多岐にわたることがあります。原因分析の力量が重要であり、そのためには切り口の選び方が解決の度合いを大きく左右すると思います。 検証不足は問題を招く? 気になる点としては、要因分析から原因把握を行う際に、十分な検証を行わずにすぐに解決策に飛びついてしまうことが多く見られます。複数の解決策を列挙し、その中から重要度が高く、効果があるものを優先して対応することが肝心です。それでも上手くいかない場合には、PDCA(Plan-Do-Check-Act)サイクルを再検討することが必要です。

データ・アナリティクス入門

仮説で広がる学びのストーリー

仮説実践の難しさは? ライブ授業では、複数の仮説を立てるという基本的な部分が十分に実践できなかった点が痛恨でした。一つの仮説に固執せず、他の可能性も探る姿勢が足りなかったと感じています。また、MECEの視点で仮説を整理することも十分にできていなかったため、異なる切り口からの検証が不十分でした。 どう多角的に考えた? 仮説を立てる際には、まず複数の仮説を提示し、その中から最適なものを選び抜くことが大切です。一つの見方に偏らず、様々な要因を網羅することで仮説同士の整合性と広がりを持たせることが求められます。例えば、仮説の検討時には「ヒト」「モノ」「カネ」などの多角的な視点を意識することで、より具体的かつ網羅的なアプローチが可能になると感じています。 整理と評価はどう? 全体としては、仮説を立てるポイントが明確に整理されており、その点は非常に評価できると感じています。今後は、具体例を積極的に取り入れながら、仮説の網羅性や検証方法をさらに深めると、理解もより一層深まるでしょう。 検証法をどう考える? また、仮説を立てた後にその妥当性をどのように検証するかも重要なテーマです。MECEを実践した具体例について自分の言葉で説明できるようになると、思考の質はさらに向上します。日常の小さな問題にも仮説を導入して検証することで、実務における分析力や判断力の強化に繋がります。 チーム成果はどう見る? さらに、データ分析チームのマネージャーとして、自分自身で分析計画を立てるとともに、チームメンバーへの具体的なアドバイスや指摘ができる状態を目指すことが求められます。今回学んだ仮説思考を活用し、チーム成果を資料やグラフでわかりやすく可視化する取り組みは、今後のマネジメント業務においても大いに役立つと感じています。

データ・アナリティクス入門

分解と検証で明かす解決のヒント

どこに問題潜む? 問題の原因を探るためには、まずプロセスを段階ごとに分解するアプローチが有効です。これにより、どの段階に問題が潜んでいるのかを明確にできます。同時に、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが重要です。決め打ちせず、判断基準の重要度に基づく重み付けを行いながら評価する方法がおすすめです。 条件は整ってる? A/Bテストにおいては、それぞれの施策を比較・評価する際、できる限り条件を揃えることが求められます。 どうやって精度向上? また、ステップを踏んでデータ分析を行うことで、問題解決の精度を高めることができます。ある程度有望な仮説が立てられたら、まずは実行し、実際の市場や顧客の反応をもとにデータを収集して検証を重ねる方法が効果的です。 どこで・なぜ・どうやる? 自分の身の周りでデータ分析のトレーニングをする際は、まず「どこで(Where)」問題が発生しているのか把握し、次に「なぜ(Why)」その仮説が成り立つのかを立て、最後に「どのように(How)」打ち手の有効性を検証するプロセスが役立ちます。 どちらが響く? プロモーション活動のマネジメント業務において、インターネットを介した施策が難しい場合でも、どのパッケージが顧客に響くのかを検証する観点で実施することが可能です。例えば、協調すべき訴求ポイントをAパターンとBパターンで打ち出し、どちらがより顧客の反応を捉えられるかを分析・検証します。まずは、AパターンとBパターンそれぞれのアクションプランを策定しチームで共有し、条件をできる限り揃えられるよう協議します。その上で、予測されるボトルネックを洗い出し検証を進め、アクションが決まれば早速実行し、仮説検証を繰り返すことで問題解決へと結び付けていきます。

マーケティング入門

顧客ニーズを探る新視点の発見

顧客ニーズって何だろう? 「何を売るか」を考える際に、まず「顧客のニーズ」を念頭に置くことの重要性を学びました。顧客の「欲求」やそれを解決する手段、さらには顧客が自覚していないニーズについても思案し、提案できるよう努めることが大切です。また、自分が顧客の立場になったつもりで考えることも顧客理解に役立つ方法の一つだと学びました。 具体例はどう活かす? 学びを具体例で深めることができ、特にある事例が大変わかりやすかったです。具体的な例があることで、自社ではどう当てはめるかを想像でき、考えがさらに深まったと感じます。 ペインポイントの意味は? 中でも印象に残ったのは「ペインポイント」という言葉でした。これは「痛みや不快に感じていること」を指し、お金を出してでも解消したいと顧客が感じるポイントです。実はこの視点を私は見逃していたように思いました。 商品見直しの狙いは? 現在、自社製品の商品ラインナップの見直しを行っています。会議では以下の点について分析し、新しい提案をしようと計画していますが、課題もあります。 顧客ニーズの調査は? ①顧客ニーズの分析 ターゲット層が求めているものは何かを考えます。特にペインポイントを解消するという視点で、年代別の特徴を調査したいと考えています。しかし、アンケートを行う時間がないため、正確な情報を得るにはどこからデータを集めるかが課題です。 自社の強みを考える? ②自社の強み どのような点が自社の強みなのか、ブランドイメージを損なわず、原点に立ち返る商品を検討します。 社内データで検証する? 成功事例をもとに、社内データでカスタマージャーニーを調べ、情報を集約して部署内で共有したいと思います。そこから、顧客ニーズをさらに深掘りする相談をしてみます。

クリティカルシンキング入門

問いが開く戦略の扉

どう課題を捉える? イシューを明確にすることで、現在直面している課題に対して「今ここで答えを出すべき問い」を具体的に設定できる点が大変印象的でした。このアプローチは、実業務でチーム全体が同じ視点で課題を分析し、戦略立案に取り組む際に、論点をずらすことなく戦略を構築できる点で大きな学びとなりました。 イシューの極意は? イシュー設定のポイントとして、まずは対象となる課題の中でどこにイシューが存在しているのかを考え定めることが重要だと感じました。その上で、状況に合わせたイシューを設定し、その問いに沿った施策や対策を実行していくこと。そして、イシューから要因を分析する際には、複数の視点から切り口を洗い出し検討する方法が効果的であるという点が分かりました。 どの行動が肝心? 実際の業務においては、例えば販売部門で「四半期3ヶ月間で特定製品の販売数を昨年対比で一定割合まで向上させるために、どのような具体的なアクションが可能か」という問いを設定することが考えられます。その際には、場所(Where)、時間(When)、担当者(Who)、手段(How)の各視点から関連する要素を抽出し、具体的なAction Planに落とし込んでいくと効果的です。 どう情報を選ぶ? また、策定したAction Planは、誰に伝えたいのかという点や、伝えたい内容に応じたスライド内のグラフや文章を使い分け、資料としてまとめプレゼンテーションできるよう工夫する必要があると感じました。 本質を見極める? こうした取り組みを通して、立てた「問い」に対する切り口の決め方に悩んだり難しさを感じる場面でも、クリティカル・シンキングの考え方を実践的に応用することで、より効果的な戦略が策定できるのではないかと、改めて考えさせられました。
AIコーチング導線バナー

「分析 × ポイント」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right