データ・アナリティクス入門

現場を変える3つの発見

採用課題は何だろう? 総合演習で採用のボトルネックを特定するパートは、私自身の業務に十分活かせると感じました。実際、自社の採用活動では、1次面接には応募があっても2次面接への参加率が低い現状がありました。面接設問の内容や、面接メンバーにおける若手比率の不足といった点が、思いつき的な対応に陥っていたと反省しています。候補者の立場に立って考える視点が欠けていたことが大きな課題であると痛感しました。 営業検証はできてる? また、営業面ではカスタマージャーニーマップを作成していたものの、どこにボトルネックがあるのか十分に検証できていなかったと感じました。分析の観点からは、ジャーニーをより細かく区切る必要性があると考えます。境界線が曖昧なために実際の検証が困難になってしまい、顧客の心理変化を後で分析できる形で設計することの重要性を再認識しました。 営業戦略はどう進む? <営業データを活用した営業戦略の立案> 現在、成約率向上という課題に対応するため、これまでの商談データを活用して再検証を進めたいと考えています。以前から取り組んでいたものの、講義を受けたことでデータの粒度が粗い点に気付かされました。また、文章化やビジュアル化が十分に行われていなかったため、組織全体の納得感にも課題がありました。構造化データのみならず、商談履歴などの非構造データも組み合わせ、優先順位を明確に決定することで、より効率的な営業戦略の立案を目指します。 UX向上はどう進める? <サービス利用データを活用したUX向上施策の立案> SaaSサービスの活用状況について、アクセスログを精査し、実際に利用されている機能と利用されていない機能を分類します。利用されていない機能については、その原因を分析し、仮説を立てた上で、機能の改善や場合によっては廃止も検討する計画です。具体的には、以下のステップで進めたいと考えています。 成約率低下はなぜ? <営業データを活用した営業戦略の立案> ・まず、成約率が低い理由について仮説を立てる。 ・セグメント別や担当者別の成約率、さらに各営業ステップごとにボトルネックを抽出する。 ・低い成約率のセグメントや、担当者による影響、どのステップに問題があるのかを検証し、原因を明らかにする。 ・その上で、具体的な解決策を検討する。 使われない理由は? <サービス利用データを活用したUX向上施策の立案> ・まず、データウェアハウスからアクセスログのデータを抽出する。 ・利用されていない顧客について、導入当初から使用していなかったのか、あるいは使用頻度が次第に低下したのかを分類する。 ・なぜ特定の機能が使われていないのか、仮説を立てながら改善案を策定する。 ・顧客インタビューを通じて仮説の検証を実施する。 ・最終的に、機能改善やUX向上、場合によっては機能の廃止を実施する。

データ・アナリティクス入門

論理的思考力を徹底的に学ぶ: 実践例多数!

問題解決のフレームワーク 講座全体を通じて、特に学びとなったポイントは次の通りです。 まず、問題解決のフレームワーク「What」「Where」「Why」「How」の順番で考えることが重要であることです。これにより、問題解決のプロセスが論理的かつ体系的になります。 データ分析の視点は? 次に、数値データを分析する際に漠然と数字を見るのではなく、定量分析の5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)を持つことが大切です。これにより、効率性や再現性が向上し、同じ気付きや示唆をより効果的に得ることができます。 また、平均値を取る際には「標準偏差(データのばらつき度合)」という視点を持つことが必要です。仮に平均値が同じであっても、「ばらつきがある」「ばらつきがない」ではデータの意味合いが変わってくるからです。 Howで成果をどう上げる? 問題解決のフレームワークの最後「How」で解決策を考える際には、選択肢を絞り込むための判断基準を明確にすることが肝要です。これにより、成果を上げる可能性が高まり、仮に成果が上がらなかった場合でも、どの判断基準に問題があったのかを振り返ることで、さらなる改善が可能となります。 グラフ選びの新たな視点 関連動画で学んだポイントもいくつかあります。グラフを作成する手順「仮説や伝えたいメッセージは何か?」「比較対象は何か?」「どのグラフを使うのか?」は新しい学びでした。これまでの私は最初から「どうグラフを作ろうか」と考えていましたが、1と2を先に考えることで、自然とどのグラフを使うべきかが見えてくることに気付いたのです。 さらに、マイナスの項目がある場合にはウォーターフォールが有効であることや、何を比較対象とするかによって適切なグラフが異なることも学びました。例えば、ギャップがある場合は横棒グラフやウォーターフォール、時系列やトレンドがある場合は折れ線グラフや縦棒グラフ、散らばりや構成比率を示したい場合はヒストグラムや円グラフ、相関を示したい場合は散布図がそれぞれ適しています。 学びの実践で何が変わる? これらの学びをいくつかの面で活用したいと考えています。まず、自社サービスの課題の明確化や改善に向けて、営業プロセスの課題を整理し、日々の定例ミーティングでチームメンバーと議論を深める場で、得た知識を実践したいと思います。自分だけでなく、チーム全体に学びを共有することで、議論や分析の質を高め、より有効なアクションに繋げたいです。 また、経営分析(財務諸表の比較分析)においても今回の学びを応用するつもりです。四半期ごとに財務諸表を比較分析し、問題を具体的に特定することで、株主への業況説明の説得力を高めたいと考えています。そのためには関連書籍で知識の増強に努めたり、必要に応じて今回のような講座に参加することも検討しています。

クリティカルシンキング入門

問いで拓く戦略の未来

実例から学ぶ分解方法は? 実際のファストフード店の事例を通して、分解の仕方が違った切り口で学べたことが印象的でした。Week2の内容を思い出しながら、既存のパターンに加えて新たな切り口も見つけ、復習とパターンの拡充に繋げたいと考えています。 イシュー特定はどうすべき? また、イシューの特定が適切な打ち手を導く上で重要であると実感しました。打ち手を先に検討しても、イシューの特定が不十分では、施策が誤った方向に向かう可能性があります。実例では、客単価が下がったことを背景に、来店人数を増やすことで売上を向上させる施策が取られていました。もし客単価向上の施策を優先していたら、来店人数の伸びに結び付かなかったかもしれないと思います。 データ出し方は正確? データの出し方についても、漏れがあると問題特定が誤るリスクがあると学びました。データの提示方法や切り口について、「本当にこれでよいのか」と自問し、他者の確認を重ねることが重要であると感じています。 意見分裂をどうまとめる? さらに、イシュー特定を深めるために、チーム内で意見が分かれる場合のアプローチ統一や、異業界での異なる切り口を考えることも示唆されました。問いを常に意識し、共有することで、組織全体の方向性が明確になると理解しました。問いを中心に据えることで、議論が脱線せず、具体的かつ一貫した分析が可能になると実感しています。 問いの正しさは確認できる? 商談においても、そもそも自分たちが立てる問いが正しいかどうかを精査することが必要です。お客様との認識すり合わせを丁寧に行い、正確なイシュー設定を心がけることで、より適切な提案へとつながると考えています。また、これまではアイデア出しから議論を始めるケースが多く、議題が散漫になることもありましたが、今後はまず「何が課題か」を共有し、その上で話し合いを進めるようにしたいと思います。具体的には、イシューを画面共有して可視化する工夫を取り入れ、焦点がずれないよう意識していきます。 成果に結びつく問いは? 今回の学びは、チーム全体での売上向上施策を検討する際にも大いに生かせると感じています。正しい問いを立てることが、成果に向けた思考と行動の第一歩であると実感しました。これからは、上司と相談しながら「何が本当の課題なのか」を問い、仮説とデータ分析に基づいた多角的なアプローチを進めていくつもりです。 統一アプローチの秘訣は? また、誤ったイシュー特定を防ぐためのチェックステップや、チーム内で意見が割れた場合の統一アプローチについても検討し、日々の業務や学習に分解思考を取り入れる意識をさらに高めていきます。例えば、普段からニュースを読む際にも「どのような構造か」「なぜこうなったのか」を意識することで、多様な視点を養っていきたいと考えています。

データ・アナリティクス入門

仮説が生む実践データの魔法

分析の基本は? 分析は比較と捉え、どのようなデータを使い、どのように加工し、何を明らかにするかを明確にすることが大切です。さらに、データ分析に入る前には、目的や仮説をしっかり定める必要があります。基礎として、データの種類、統計手法、可視化などの基本概念を学び、ビジネスにおける意思決定や課題発見のためのデータ活用について理解を深めることが求められます。また、実践的な分析手法やケーススタディを通じ、具体的な応用方法を身につけることも重要です。 学びの全体像は? 全体的に、学習の振り返りは非常に明確で体系的でした。データ分析の基本から実践まで幅広く理解されている点は印象的で、今後は具体的な状況での活用例を考えることで、さらに効果的な応用ができると感じます。 活用のヒントは? さらに思考を深めるため、ご自身の業務や日常生活において、今回学んだデータ分析の知識をどのように活用できるか、具体的な場面を想定してみてください。また、データ分析における仮説の立て方について、どのように仮説を形成すると効果的か、具体的に検討してみることをお勧めします。 適用場面って何? 最後に、データを活用する場面を具体的にイメージし、その適用方法を探求してみてください。今後のさらなる飛躍に向けて、引き続き努力を重ねてください。 仮説検証の流れは? たとえば、仮説思考を鍛えるために、ビジネス課題に対して「仮説➣検証➣改善策」というフレームワークを活用することで、原因分析や改善策の構築がスムーズに進むでしょう。また、過去のデータと比較しながらKPIの設定や顧客データの活用を検討し、現在の状況の妥当性を検証することも大切です。 スキル向上は? 今後強化したいスキルとしては、まず論理的思考力を向上させるため、データリテラシーを高め、データの種類や特性を理解して適切な活用方法を判断することが挙げられます。さらに、批判的思考力を養い、データの信頼性やバイアスを見極めながら、より効果的な意思決定を目指してください。また、仮説思考を活用してビジネス課題に対する仮説を立て、実際のデータ分析で検証する実践力も重要です。 フレーム活用は? ビジネス・フレームワークの理解も不可欠です。データをもとに最適なKPIを設計し、事業の進捗を正確に測定・評価すること、そして構造的なフレームワークを実践することで、より整理された分析が可能になります。市場や競合、自社の状況を把握するため、さまざまな分析手法を積極的に活用していきましょう。 伝え方はどう? また、ヒューマンスキルの向上も重要です。データストーリーテリングによって、分析結果をメンバーにわかりやすく伝え、意思決定に繋げる技術を磨くとともに、組織全体でデータに基づいた意思決定ができる文化の醸成に努めることが求められます。

マーケティング入門

学び成長!感動の振り返り

価値の本質って? 授業では、「価値ピラミッド」の各階層について学びました。特に、機能的価値を充足した上で顧客に感情的な満足感を提供する情緒的価値の重要性を理解しました。また、Web上の情報からは階層3~5における明確な定義は見受けられないものの、環境への貢献といった側面が階層4に該当するという考え方もあることが分かりました。Netflixのように、個々の購買履歴や嗜好に基づいたパーソナライズされた提案によって、消費者一人ひとりの物語性に沿った売り方が今後ますます求められると考えています。 ピラミッドは? geminiに聞いた意見を参考に、価値ピラミッドの各階層は以下のように整理されました。第一層は製品やサービスの基本的な機能的価値、第二層はその上にある感情的な満足感を提供する情緒的価値です。第三層は、製品やサービスを通して自己肯定感や社会的地位を向上させる自己尊重価値、第四層は社会や環境への貢献を通じた社会貢献価値、そして第五層は顧客の自己実現をサポートする自己実現価値となります。 推し旅の魅力は? 現在、アニメやコミックを活用した観光案内のコンテンツ配信事業、いわゆる「推し旅」の企画を進めています。従来の「推し旅」が特定のコアなファンに特化していたため、より幅広い顧客層にアプローチする必要があります。たとえば、月ごとや四半期ごとに振り返りの旅を提案することで、従来とは異なる層にも訴求するアイデアが考えられます。人気作品を題材にした性格診断や、仕事で直面しがちな課題への解決策を盛り込んだ研修的な旅の企画も一案として挙げられます。また、没入感あるユーザーインターフェースを実現することで、ユーザーが毎日の生活の中で夢中になれる仕掛け作りも目指しています。 体験価値はどう? さらに、単にコンテンツを配信するだけではなく、実際の観光体験そのものの価値向上が重要です。新しいコンテンツを提供する際には、観光地と自然に関わるストーリーを構築し、ファンの期待を裏切らない仕様にする必要があります。大量のコンテンツを配信するのではなく、一部の有力なタイトルにこだわったツアー企画を展開することで、特別な体験を提供できると考えています。VRやARの技術を導入することで、自社で施設を所有しなくとも、魅力的なアトラクションの実現が可能となります。 審査会は進む? また、3月末に予定されている次回審査会に向け、残り1か月強でプロジェクトを推進する必要があります。新たに加わったメンバーの理解を深めつつ、期限内に成果を上げるためのマネジメントが求められています。先週、メンバー全員で作成したリーンキャンバスに不足点を問い形式で追記し、各自から解決策を募りました。重要な課題から順次クリアしていくことで、プロジェクトの円滑な進行を目指していきます。

データ・アナリティクス入門

データ分析で学ぶ問題解決の極意

データ分析の基本は比較すること? データ分析を行う際、常に重要とされるのは、次の三点の意識です。 まず、分析の基本は比較です。データの意味を正しく理解するためには、異なる要素を比較することが不可欠です。単独の数値だけでは判断が難しく、過去のデータや他の指標と比較して初めて有益な示唆を得られます。 分析の目的をどう明確にする? 次に、分析の目的を明確にすることです。なぜデータを分析するのか、その目的を常に意識することが重要です。目的が不明確だと、必要なデータを見落としたり、無駄な分析を行ったりする恐れがあります。 仮説の整理で見失わないために? 最後に、分析の前に目的と仮説を整理することです。データを集める前に、「何を明らかにしたいのか」「どのような仮説を検証するのか」を整理しておく必要があります。これが曖昧だと、分析の方向性を見失い、効果的な意思決定につながらない可能性があります。 これらのポイントを意識することで、より実践的で価値のあるデータ分析が可能となります。 依頼主の目的をどうヒアリングする? 現在の業務では、データ分析の依頼を受けることが多いですが、依頼主の目的や仮説を確認しないままデータ加工に進むことがあります。さらに、依頼主自身が目的や仮説を明確にできていないケースも少なくありません。その結果、分析が本来の目的に合致せず、期待した価値を生まないデータとなってしまうことがあります。 これらの課題を解決するため、データ分析に着手する前に、依頼の背景や目的、仮説を丁寧にヒアリングし、必要に応じて適切な方向性を示すことを目指します。単なるデータ処理のスキルだけでなく、適切な問いを立て、論理的に考える力が必要です。本講座を通じて、そうしたスキルや思考法を習得し、より価値のあるデータ分析を目指していきます。 継続的な改善が価値を生む? 依頼主の目的や仮説を十分に確認しないまま進むことを防ぐため、以下の行動を実践しています。まず、依頼時のヒアリングを徹底します。「何のための分析か」「どのような意思決定につなげたいのか」を明確にする質問を行います。目的や仮説が曖昧な場合は、具体的な事例を挙げながら整理をサポートします。 次に、仮説の検証を意識したデータ設計を行い、目的・仮説に沿ったデータの選定・加工・分析の方針を明確にします。必要に応じて事前に簡単なデータの傾向を確認し、分析の方向性が適切かを判断します。 最後に、分析結果に適切なメッセージを添えます。「このデータから何が言えるのか」「どのような意思決定に役立つのか」を言語化し、依頼主が結果を適切に解釈できるよう、シンプルで分かりやすい可視化や説明を心がけます。 これらを継続的に実践し、依頼主にとって本当に価値のあるデータ分析を行えるよう努めています。

データ・アナリティクス入門

仮説で切り拓く思考と成長の道

仮説はどう捉える? 仮説は論点に対する仮の答えであり、そこから検証や分析を進める出発点といえます。仮説には「結論の仮説」と「問題解決の仮説」という2種類があり、前者は最終的な結論の方向性を先に立て、そこから逆算して必要な情報を集めて検証を進めるものです。一方、後者は起きている問題に対して「なぜそうなっているのか」「どうすれば改善できるか」を探るプロセスであり、What、Where、Why、Howといった問題解決の手法を意識して仮説を立てます。 仮説はどう整理? これまでは仮説を一括りで捉えていましたが、今後はどちらのタイプの仮説に取り組んでいるのかを明確に意識して使い分けたいと感じています。また、複数の仮説を立てることで決め打ちを避け、柔軟な視点を保つことができます。加えて、仮説同士の網羅性を意識し、カテゴリやプロセスといった異なる切り口からの検討は、より構造的なアプローチにつながります。こうした取り組みが、課題設定力の向上にも寄与すると考えています。 どんな経験が役立つ? これまでの業務経験では、「結論の仮説」と「問題解決の仮説」の両方に取り組む機会がありました。特に施策の立案など、結論を先に想定する場面ではフレームや構造を活用し、全体像を俯瞰したうえで結論から逆算して仮説を立てることが効果的だと感じています。一方、日々の業務でデータを確認し、問題を発見・提示する機会が増える中、What/Where/Why/Howのプロセスを意識した仮説立案が、原因特定から改善策の検討までの一連の流れを円滑に進める助けとなっています。 仮説の質はどう上がる? また、仮説の質を高めるためには、網羅性を意識しながらさまざまな切り口で検討する姿勢が重要です。この取り組みを通じて、本質的な課題設定ができ、より実効性のある打ち手へとつなげることができると実感しています。 学習の効果は何? 今回の学習を通して、「結論の仮説」と「問題解決の仮説」という2種類の仮説が存在することを再認識しました。振り返ると、私は「こうすればうまくいく」という結論の仮説に対してやや苦手意識を持っていたと気づきました。 今後の改善はどう? そこで今後は、まずフレームワークを活用して構造的に考えることに努めます。要素分解を通じて仮説を立てやすくし、思考に型を取り入れることで苦手な結論型の仮説も導き出しやすくする狙いです。また、間違ってもよいという前提で自分なりの仮説を積極的に立てることで、完璧を求めず「とりあえずの仮置き」を実践し、言い切る練習を重ねつつ検証を前提とした思考に慣れていきます。さらに、学んだ知識をそのまま受け入れるのではなく、自身の業務や経験に照らして問い直し、アウトプットや振り返りを通じて知識を深め、実際に使える形に育てる努力を続ける所存です。

デザイン思考入門

実践で磨くプロトタイプの極意

次回の進行はどうする? 次回、デザイン企画に取り組む際には、今回学んだプロトタイピングのステップを軸に、各段階で何を検証するかを明確にして進めたいと考えています。まず、コンセプトは言葉や写真、場合によっては動画を用いて確認し、そのアイデアが受け入れられやすいものか、分かりやすいか、また実際に欲しいと感じてもらえるかを見極めます。次に、デザイン画を通じて、顧客のニーズに合致しているかどうかをチェックします。 デザイン感覚はどう感じ? また、実際のモックアップを用いて、より細かなデザインの要素や機能、操作感を体感し、その使用感が十分かどうかを確認するとともに、フィールドテストを実施してユーザーからのフィードバックを得ることで、さらなる改善点を抽出したいと考えています。動画講座にあった利用イメージを動画化する手法も、ユーザーがどのようなシーンで製品を使いたいかといった意識を具体的に引き出すために有効だと感じました。 検証項目はどう決める? これまで、ウェブアプリなどではプロトタイピングツールを使って操作画面イメージの共有やUXのチェックを試みたものの、プロセスやチェックポイントを明文化して整理するまでには至っていませんでした。今後は、具体的な検証項目を事前に定め、整理した上で進めることで、より実効性のある確認やヒアリングが可能になると考えています。 フィードバックはどう伝える? 今回の課題では、デザイン画の作成までに留まりましたが、事前に欲しい機能やデザインの要件を整理し、デザイン画を作成した点は評価できると感じています。今後は、このデザイン画を共有しフィードバックを得た上で、改良すべきチェックポイントを明確に洗い出し、ブラッシュアップしていく予定です。 ステップごとに確認は? プロトタイピングの各ステップについては、まずコンセプトの確認において、言葉や写真、動画などを活用し、コンセプトが受け入れられるかどうかを検証します。次に、デザイン画を用いてデザイン自体の魅力や、機能や要件が適切に反映されているか、情報設計が適切かどうかを確認します。現行製品がある場合はその比較も有効ですが、全く新規の場合は試作とデザイン画を繰り返しながら進めることになるでしょう。 操作感は十分? さらに、実際のモックアップを用いて操作感や細部のデザイン、機能性を実体験し、製品が価格に見合っているかどうかも確かめます。最後に、試作品を用いたフィールドテストで、実際の使用環境下での操作感、耐久性、そして予期せぬ利用パターンの発生を確認することが大切です。 改善策はどこに? こうした各ステップで、手段とチェックポイントを整理し、必要なヒアリング項目や観察項目を明文化しておくと、次回以降のプロセス管理や改善につながると感じています。

戦略思考入門

業務改善への学びを深める新たな視点

複雑性の原因は? 現在、私の所属する会社では、複数の事業が並立し、複雑化しています。この状況を「範囲の不経済」として再認識する機会となりました。新規事業を立ち上げるにあたって、社内資源を最大限に活用しようと心掛けていましたが、それがかえって事業の複雑性を増す原因になっていたように感じます。今後は、「既存ビジネスとの資源の共通部分が本当に強みを生むのか」を再度考える必要があると感じています。 業務思考の向上は? 総合演習を通じて、普段の業務に当てはめて考えることのできる観点を学びましたが、実際には業務中に立ち止まって考える余裕が足りませんでした。今後は、自分自身で立ち止まり、思考を深めるべきポイントを明確にすることから始めたいと思います。また、演習時に思い付きで意見を列挙した場合と、フレームワークを活用して検討した場合とでは、回答の整理や網羅性に大きな違いがありました。この違いは業務にも大きく影響するため、情報の整理や思考を深めることを習慣化したいと考えています。 部門調整はどう? また、現在は事業が多様化しており、範囲の不経済が生じている状況です。業務においては、本部間の調整や組織の運営に対処する必要があります。これに対し、まずは個々の本部の意向を一旦脇に置き、会社全体のあるべき姿を客観的に見据えて、他部門との対話や調整を進めていきたいと思います。 ターゲット明確化は? 演習を通じて、ターゲットの明確化が不可欠であることを改めて認識しました。現在、事業全体で共通のターゲット像が描けていないことが課題です。これまでこの問題に対して提言できずにいましたが、学習によって外部環境や内部環境の整理が不足していたことが原因であると理解しました。今後は、行動計画に従って具体的な対策を講じたいと思います。 資源活用を見直す? まず、自部門に限らず他部門も含めたバリューチェーン分析やVRIO分析を行い、会社全体の構造と資源を再評価したいと考えています。これまでの「自社資源を何が何でも活用する」という考えを見直し、共通の資源が本当に強みとなるかを検討することで、真にシナジーが期待できる部分のみを利用するようにして、経済的な効果を生み出す状態を目指します. 議論で成長できる? 加えて、3C分析やSWOT分析を用いて一切の漏れがないよう情報を整理し、ターゲットをどこに設定すべきか、自分の言葉で繰り返し言語化していきます。この学び全体を通じて、言語化の重要性とそれに伴う能力の鍛錬が必要であることに気づきました。したがって、今後のアウトプットについては、必ず上司や同僚と議論し、終わりではなく改善を繰り返す姿勢で取り組んでいきたいと思っています。

リーダーシップ・キャリアビジョン入門

具体的フィードバックで築く信頼

面談の具体は? ロールプレイを通して、効果的な面談に必要な留意点を学びました。面談では、抽象的な印象ではなく具体的な事実に基づいて伝えることが信頼関係の土台となります。また、メンバーが直面している困難や苦労に共感することで、心理的安全性を保つことが大切だと感じました。自分自身や環境の不足については、素直に非を認め、誠実に対応する姿勢も重要です。 どんなフィードバック? フィードバックの際は、良かった点と改善が必要な点を具体例とともに明確に伝えることで、建設的な対話が生まれます。一方的に指示を伝えるのではなく、相手自身が気づきを得られるような質問を取り入れることで、自発的な振り返りと成長支援につながると理解しました。 成長支援の鍵は? 部下や同僚との1on1では、相手の課題に共感し、具体的な事実をもとにフィードバックを行うことで、効果的な成長支援が可能だと考えます。また、プロジェクト進行中に障害が発生した際は、自身の責任を認めた上で解決策を提示することが信頼を生み出します。会議においても、「どうすれば改善できるか」といった質問を通じ、参加者の当事者意識を高めることができると実感しました。 信頼感はどう築く? これらのコミュニケーションスキルは、チーム内の心理的安全性向上と業務効率化の両面に貢献すると考えています。 日常の準備は? まず第1段階として、日常的な関係構築から準備を始めます。チームメンバーとのカジュアルな会話を通じて、各々の価値観や性格を理解することが基盤となります。また、定期的な1on1面談の時間を確保し、フィードバック時に具体的な事実を記録する習慣をつけることも有効です。さらに、自己の感情や反応パターンを認識し、冷静に対応できる自己調整能力を養うことが必要です。 対話実践の秘訣は? 次に第2段階として、実践とスキルの適用に取り組みます。実際の対話の場では、まず相手の話にしっかりと耳を傾け、「〜と感じているのですね」といった言葉で共感を示します。その上で、具体的な事実や観察に基づいたフィードバックを「〜という場面で、〜という行動がありました」と伝えます。問題が発生した場合には、「私の〜という点が至らず」と率直に責任を認めた上で、建設的な解決策を提案する姿勢が求められます。 振り返りと改善は? 最後に第3段階として、対話後の振り返りと継続的な改善を行います。各対話後に、相手がどのように受け止めたか、効果的だった点や改善すべき点を自己評価し、相手からのフィードバックも積極的に取り入れます。成功体験を記録して自信につなげるとともに、定期的に関連書籍やトレーニングで知識をアップデートし、長期的なスキル向上を目指していきます。

データ・アナリティクス入門

データ分析を活用して目標達成!

振り返るべき分析の本質とは? ライブ授業を通して、以下の3点について再確認できました: 1. 分析の本質は比較である。 2. 問題解決の4つのステップ(What-Where-Why-How)全てにおいて仮説思考が重要である。 3. やみくもに注意! データ分析における重要ポイント データ分析において覚えておきたいポイントは以下の通りです: まず、何のために分析するのかという「目的(問い)」を押さえ、その問いに対して「仮説(ストーリー)」を立て、その上で「データ収集」をし、分析を通して「仮説検証」を行うことが重要です。データ収集方法は既存のものを「リサーチ」、新たに必要なデータは「見る」「聞く」「行う」で収集します。 次に、分析の際に必要な視点として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」があり、アプローチ方法として「グラフ」「数字」「数式」があります。 さらに、比較の前提となる"複数"と"網羅性"を担保するためにフレームワークを利用することが有効です。 長期的な目標設定の方法は? 以上を踏まえ、データ分析をハイサイクルで繰り返すことで、客観性と納得性が高い本質的な課題解決や新しい目標設定が可能となることが分かりました。 また、GAiLを通して「ありたい姿(現時点での目指す方向)」をあらためて描くことで、自分の目標が職場だけでなく、公私に共通するものであると気づきました。ありたい姿を実現するには、「ゴールを設定する」「やることとやらないことを決める」「整合を取る」ところでデータ分析を活用したいと思います。そして、公私において必要となるコンセプチュアル・スキルとヒューマン・スキルの一つであるコーチング力に注力し、ビジネス・フレームワークを身に付けていくことで、中期事業計画の策定で高度な専門性を持つことを目指します。 即断即決の精度を上げるには? 中期事業計画の策定に向けて関係者と共に戦略を自らのものとして進めるために、ビジネスの定石・フレームワークを活かしつつ客観性と納得性を担保し、最後にはこれまで培った集合知を総動員した発想の飛躍に挑戦したいと思います。 経験と勘による即断即決が多くなっていることに気づきますが、それに頼らずビジネス・フレームワークとコンセプチュアル・スキルを用いて自ら検証することの重要性も感じています。即断即決する前に深く考える時間を持ち、その考えをメモに書き出してデータ分析をもとに検証する習慣をつけたいと思います。これからも即断即決が必要な場面はありますが、その精度を上げ、発想の飛躍ができるために、視座を高く持ち、視野を広くもって先輩や上司、仲間と共に高め合える関係を継続していきたいと考えています。

デザイン思考入門

自分も受講したい!共感ステップの実践

なぜ共感が大切? 「共感ステップ」では、単なる情報収集にとどまらず、ユーザーの課題や背景を深く理解し、求める解決策を的確に見極めることが重要であると学びました。現在取り組んでいるワークショップ形式の研修デザインにおいても、受講者の視点に立ち、彼らが何を感じ、何を求めているのかを探るプロセスに重点を置く必要があると考えます。例えば、研修設計の段階で自ら受講者となって演習を体験し、ショートケースの妥当性や適切な所要時間を確認すること、また事前アンケートにより受講の狙いや期待を把握することで、表面的なニーズだけでなく本質的な課題も見極めることができると実感しました。 どう適用する? 共感ステップについて、具体的な研修デザインへの適用方法をよく考えられている点は非常に印象的です。より多くの受講者の視点やニーズを探るアプローチを試みることで、さらに多面的な理解が得られると感じます。 どの調査が有効? また、受講者の背景や課題を深く理解するために、どのような追加の調査手法が有効か、そしてワークショップデザインで共感をさらに深めるためにどのような方法を試すべきかを考えることも有意義だと思います。 どう設計すべき? 事前アンケートの実施や自身での演習を通じて、以下の点が重要であると改めて認識しました。まず、受講者のペルソナに応じた研修の難易度設定とシナリオ作成です。受講者の職種、経験年数、課題意識を踏まえ、適切なレベル感で研修を設計し、理解しやすいストーリー展開を意識することが求められます。次に、説明資料の粒度と所要時間のバランス調整が重要です。受講者の集中力や理解度を考慮し、必要な情報を適切なボリュームで提供するとともに、講義とワークの時間配分を最適化する工夫が必要です。さらに、ワークの難易度設定と題材設計については、受講者が主体的に考え、実践的なスキルを習得できるよう、初心者でも取り組みやすく、発展的な応用が可能な内容を用意することが大切です。 どう改善する? 今後も、受講者の視点に立ち、実際の学びにつながる研修デザインを追求していきたいと考えています。今週は、共感ステップの実践を通じて、ユーザー理解の深め方について学びました。現場に足を運び、ユーザーの行動や発言を客観的に捉える「現場観察」と、自らが取り組む中で感じる感情や視点を体験する「参与観察」との違いが印象に残り、これらの手法を組み合わせることで、ユーザーの潜在的なニーズや課題の本質を見極めるための深い分析が可能になると感じました。今後は、実践の場を通じて共感ステップをより意識的に活用し、受講者視点の学びを深めながら、研修デザインやサービスの改善につなげていきたいと思います。

「必要 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right