クリティカルシンキング入門

伝わる!ピラミッドストラクチャー活用法

社内コミュニケーションでの学びの活用法 社内のイントラネットやグループウェアを通じて日々の業務に関するやり取りをする際、今回の学びをフルに活用したいと感じました。 日々の業務での文章課題は? 日々の報連相や業務指示、業務連絡などで文章が長くなることがあり、課題に感じることがあります。 文章構成の改善方法は? 文章の構成に関しては、「ここで伝えるべきことは何か」「何を伝えたいのか」というイシューを明確にし、ピラミッドストラクチャーを意識して文章を構築したいと思います。 具体的には、以下の方法を取り入れます: - 文章を「書き込み」「送信」する前に、メモ帳などに書き起こす。 - 長文になった際、文章を俯瞰して確認する。 - 「イシューを特定する」:真に自分が主張したいこと、ここで伝えるべきことを俯瞰してみて再度確認する。 - 「論理の枠組みを再考する」:自分が主張したいことや伝えるべきことを伝える枠組みとしてふさわしいのかを俯瞰して確認する。 このように、文章の構成を考える際にピラミッドストラクチャーを活用することで、日々の業務コミュニケーションがより効果的になると考えています。

クリティカルシンキング入門

問いで開く課題解決への扉

問いの立て方はどう? 問題が発生した際、問いの立て方によって真に解決すべき課題が異なり、解決策の方向性が決まってくることがよく理解できました。イシューとは何か、またイシューを設定して考えるとはどういうことかを知っていないと、問題の本質にたどり着けないということも実感しました。 問いが変える提案は? このアプローチは、私自身の業務における顧客の課題解決にも活用できると感じています。これまでユーザーの課題を聞き取りシステムを提案してきましたが、結局は活用されない機能が存在したこともありました。今後は、常に「問い」を立て、問題の本質を追求した上で提案していく必要があると考えています。 組織課題の見極めは? また、社内では組織の抱える課題を正確に見極め、その解決策を事業計画に反映させたいと思っています。まずは、自身の業務において、ユーザーの課題に対してすぐに解答を提示するのではなく、問いを設定してその内容が本質的なものかどうかを繰り返し吟味しながら、適切な提案を行うことが重要です。そして、そのプロセスをチームで共有し、全員が同じ方向に向かって取り組めるようチームビルディングに努めていきたいです。

データ・アナリティクス入門

営業成績アップのカギは仮説立てにあり!

仮説を立てる重要性とは? 原因を見つけるためには、仮説を立ててデータを収集することが重要だとWeek4で学びました。仮説は一つに絞らず、複数立ててから絞り込むことが大切であり、仮説同士に網羅性を持たせる必要がある点に納得しました。しかし、網羅性や複数の仮説を考え過ぎると時間がかかるため、バランスを考えることが重要です。 営業成績向上の仮説は? 例えば、自分の営業成績が悪いときに成績を上げることを目的とした場合、様々なポイントで仮説を立てられます。行動数が足りない、提案の質が悪い、ニーズが大きいクライアントに当たっていないなど、様々な仮説が考えられます。網羅性の確認には他のフレームワークを活用することが有効です。 データと仮説の精度を高める方法 具体的には、まず仮説を立てるために自分の営業プロセスを分解し、その過程でフレームワークを調べたり、上長とディスカッションを行ったりして網羅性を高めます。また、過去の営業成績からデータを抽出し、仮説の精度を上げるための材料にします。もし不可欠なデータが不足している場合は、将来的にはデータの取得が可能となるように社内で提案することも考えられます。

データ・アナリティクス入門

仮説思考を活用したデジタル化挑戦記

仮説思考の基本は? 仮説思考は、ビジネスのスピードと精度を向上させ、説得力を伴った意思決定を行うために重要です。このプロセスを実践するには、まず複数の仮説を立て、網羅性を持たせることが必要です。仮説を立てる際の重要なツールとして、フレームワークを活用することが推奨されます。仮説には、結論の仮説と問題解決の仮説があり、特に問題解決の仮説では、what、where、why、howの順に考えることが基本です。 デジタル化の進め方は? 私の仕事の一環として、保険手続きを紙からデジタルへと移行させる方法を模索していますが、現状では多くの既存データが十分に活用されていないと感じています。そのため、仮説思考を取り入れながら、デジタル化率を向上させるための施策を複数考えたいと思います。 実行策の視点は? まず、手続きの種類ごとにデジタル化率を向上させる余地があるか、既存データを基に複数の網羅的な仮説を立てます(where)。次に、デジタル化が進んでいない理由を明らかにするため、幾つかの原因を挙げます(why)。そして、実現可能性やコストを考慮しながら、具体的な実行策を練ります(how)。

クリティカルシンキング入門

データ分析で見つける新しい視点

データ加工の効果的な手法とは? データ加工の手法として、合計や割合を算出するための新しい列を加えることで、傾向や特徴を明確に把握できるという利点があります。また、これをグラフ化することも効果的です。 切り口次第で変わるデータ分析 データの切り口次第で傾向や特徴は変化します。そのため、どの切り口でデータを分けるかをしっかり考えることが重要です。さらに、グラフを活用することで、分析結果を視覚的に伝達しやすくなります。 広い視点で進めるデータ分析 データ分析を行う際には、When、Who、Howといった複数の切り口からデータを分解し、分析を進める必要があります。一つの切り口に頼らず、複数の視点から考えることで、より深い分析結果を得られると考えられます。 顧客増加へのデータ分析アプローチ 顧客を増やすためのデータ分析では、これらの手法が役立ちます。データ加工や分け方に基づいた分析結果をグラフで示すことで、発表時に結果を納得してもらいやすくなるでしょう。 新たな知見をどう活かすか? 今回学んだ知見をデータ分析に活かし、様々な切り口からの付加価値のある分析を目指したいと思います。

クリティカルシンキング入門

問題解決の第一歩:イシュー設定の極意

適切なイシューの設定法は? 適切なイシューを設定する方法について、まずはロジックツリーを用いて問題や課題を詳細化し、その上でどの問題・課題をイシューとして設定するかを決定することが重要です。イシューは、状況に応じてタイミングよく変化させることも必要です。つまり、「今は何を考えるべきか?」すなわち「今解くべき問い(イシュー)は何か?」ということを常に意識することが求められます。 クライアントとの会議での活用法は? クライアントとの会議(特に進捗会議)で課題を探すときや、クライアントの課題分析や問題分析を行うときには、適切なイシューを設定することが決定的に重要です。また、資料全般をレビューするときには、資料の活用方法とその影響を予測して課題や問題がありそうかを見極めることが必要です。 自分の問いをどう共有する? クライアント向けに課題を発見する際には、イシューの明確化から取り組むことを心がけています。その際、自分の場合はA4以上のコピー用紙に手書きで書くことで、考えがまとまりやすくなります。自分がどのような問いに取り組んでいるのかをチームや上司に共有し、協力して解くことも大切です。

戦略思考入門

多角的視点で見直す戦略論

偏りと検討の重要性は? 今回の学習を通じて、戦略を考える際に自分の得意な考え方や方法に偏りがちな点に気づきました。そのため、フレームワークを用いて物事を多面的に検討する重要性を学びました。一面的な対策だけでは全体の整合性がとれず効果が限定的になってしまうため、さまざまな角度から得た情報を統合し、より効果的な戦略を策定する必要があると感じました。 社会的意義を考える? また、高い視点から自社の事業が持つ社会的意義を意識し、短期的な目標と長期的に実現したい姿とのバランスを保つことも大切だと学びました。これにより、戦略の全体像を捉えながら現実的な目標設定ができるようになりました。 市場と戦略の真意は? さらに、競合店舗のマーケティングリサーチを通して、顧客や市場全体のニーズ、そしてそれらを取り巻く社会情勢に対応した産業全体の戦略について考察する視点が身につきました。実際の売場を見る際には、その背景にある意図や戦略を分析し、PEST分析などの手法を活用して、どのような市場ニーズに応えているのかを考えるとともに、自社や自店舗が取るべき具体的な行動について再考することができるようになりました。

データ・アナリティクス入門

仮説を超えて広がる学びの可能性

仮説はどう考える? 仮説を立てる際には、ただ闇雲に考えを巡らせるのではなく、3Cや4Pといったフレームワークを有効に活用することを学びました。その上で、仮説は複数立てることが重要であると感じています。 本当に必要なデータは? また、データ収集に関しては、まず既存のデータを検討し、不足している情報がある場合に新たなデータを集める必要があると理解しました。立てた仮説に都合の良いデータだけを選ぶと説得力が欠けるため、注意深くバランスをとることが求められます。 問題の原因は何か? さらに、業務における障害分析では、問題の解決に向けた仮説の立案が主な目的となります。現状で行っている真因分析とも連動し、What、Where、Why、Howのプロセスを意識して問題を深く掘り下げることが必要だと感じました。 実践で学ぶヒントは? 実際、日々発生する障害や事象について原因を深掘りし、複数の仮説を検討する癖をつけることで、経験を積んでいきたいと思います。ただし、データ収集の方法には工夫が必要であり、過去の事例をカテゴリー分けするなど、データを整理・加工する手法の改善が求められると考えています。

マーケティング入門

ターゲット選定で未来を切り拓く方法

セグメンテーションの أهميةとは? セグメンテーションとターゲティングについて学び、ニーズや特性に基づいて市場を区分し、適切なターゲットを選ぶことの重要性を理解しました。限られた経営資源を如何に効果的に活用して、結果を導き出すかが鍵となります。様々なことに手を広げすぎると、資源が枯渇してしまい結果が出ないというリスクがあります。 自社のコアコンピタンスを見極める 自社のコアコンピタンスが何であるかを考えることも大切です。もし今後、自社のノウハウを外部に販売することになった際、どのようにターゲティングを行うべきか。また、市場に競合がどのくらいいるのかを把握するためには、自分のスキルを高めることも重要ですが、市場全体を俯瞰する視点も必要だと感じます。 マーケティング手法はどう選ぶ? 現在は社内の自動化と個人のスキル向上に重点を置いていますが、それらを自社の価値あるコンテンツとして市場に提供するにはどのようなマーケティング手法が適しているのかを考える必要があります。また、学んだ思考のフレームワークを活かして、まず仮説を立て、その仮説に基づく販売戦略を考えることが求められています。

データ・アナリティクス入門

データが語る合格ストーリー

分析の目的は何か? 分析とは、異なる対象を比較する作業です。データには量的なものと質的なものがあり、分析の目的に合わせた適切なデータ収集が求められます。何を明らかにしたいのかを事前に定めた上で、さまざまな方法を用いて分析を進めることが重要です。なお、データ分析は社会の多くの分野で幅広く活用されています。 国家試験の変数を探る? 学生の国家試験合格の可能性を推定する際には、各変数についてもれなく、かつ重複なく抽出する必要があります。例えば、地域診断の項目に基づいて情報収集を行い、理論モデルに従うと同時に、優先順位を踏まえた効率的なアセスメントが可能になると考えられます。 重みづけはどう考える? 具体的には、国家試験に合格した学生と不合格の学生を比較する際に、MICEによる変数の再検討が挙げられます。高校卒業時の成績、入学試験の方式や結果、入学から4年生までの全履修科目の評価、粗点、出席状況、提出物の遅滞や未提出、模擬試験の結果の推移、さらには国家試験対策講座の出席状況など、さまざまな要素を盛り込むことが考えられます。しかし、各要素の重みづけについては現状、疑問点が残る状況です。

クリティカルシンキング入門

問いを極める!課題解決の一歩

問題点は正しく見えてる? 課題解決を考える際は、まず問題点が何かを洗い出し、さらにその問題点が本当に正しいのか見つめ直すことが大切であると感じました。また、定めた問題点を皆で確認しながら議論を進めることで、的確な議論が実現できると学びました。 会議の議題は整理済? 会議では、始める前にイシューを明確にすることで、話がぶれることを防げると実感しました。 企画立案の仮説は? 新商品企画を立案する際には、アンケートを実施して回答を集計する前に、課題の仮説を立てやすくするために問題点を整理しておくことが重要だと考えました。回答を集めるだけでなく、課題の検証としてアンケートを活用することで、現状の課題や商品の課題を整理しながら進めると、途中でコンセプトがぶれにくくなることを学びました。 問いは効果的? 普段から「問い」に意識を向け、直感で問題を捉えるのではなく、問題点が本当に正しいのかいろいろな方向から考えることが求められます。捉えた問題点を相手に的確に伝えるために、話を整理して伝えることや、課題を共有しながら確認して進める姿勢が、より効果的な議論や企画につながると感じました。

データ・アナリティクス入門

データ分析で見えた改善のヒント

目的と比較の重要性を認識 実務では無意識で実践していましたが、分析においては目的と比較が重要であることを再認識しました。「何を伝えたいのか」によってグラフの作成方法を考える、という視点は今後意識していきたいです。また、分析において要素に分解することは大切ですが、目的が明確でないと細かく分解すること自体が目的化してしまう可能性があるため、注意したいところです。 分析結果を施策にどう活かす? 弊社サービスの利用率や更新率を高める施策を考える上で、ユーザーデータの分析における学びを活用したいと思います。具体的には、「利用率を高める」ことと「更新率を高める」ことという目的に分けて、ユーザーの利用データや解約時アンケートなどの各種データから必要な項目を抽出し、分析します。 チームとの効果的な議論をどう行う? 毎週のチームメンバーとのミーティングでは、学んだことをメンバーにアウトプットし、チーム全体の視座を揃えるように努めます。特に、「利用率を高める」「更新率を高める」ためのデータ分析をメンバーと協力して行い、効果的な施策を導き出せるよう、有意義なディスカッションを重ねていきたいです。

「考える × 活用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right