データ・アナリティクス入門

数字から紐解く現場の実情

データ分析はどう見る? 今週はデータ分析の基本的なアプローチについて学びました。データを評価する際は、まず「データの中心がどこに位置しているか」を示す代表値と、「データがどのように散らばっているか」を示す散らばりの2つの視点が大切であることを実感しました。代表値としては、単純平均のほか、重みを考慮した加重平均、推移を捉えるための幾何平均、極端な値の影響を排除する中央値などがあると理解しました。また、散らばりの具体的な指標として標準偏差を学び、データが平均からどの程度離れて散らばっているかを数値で評価できることが分かりました。 現場での活用方法は? これらの知識は、実際の現場での作業時間、コスト管理、安全管理などに役立つと感じました。例えば、複数の現場における作業時間の平均を求める際、単純平均だけでなく、現場ごとの規模に応じた重みをつけた加重平均を用いることで、より実態に即した傾向を把握できると考えます。また、標準偏差を利用することで、同じ作業工程でも現場ごとのバラつきを数値で示し、ばらつきが大きい工程には重点的な対策が必要であると判断しやすくなります。数字の羅列だけでなく、背景や偏りを理解しながらデータを多面的に捉える習慣の重要性を再認識しました。 次のステップは何? 今後は、各現場における作業時間や工程進捗、コストなどのデータを収集し、単純平均だけでなく加重平均や標準偏差も併せて算出することから始めます。特に、同じ工程内で標準偏差が大きい場合は、どの現場で大きなばらつきが見られるのかを明らかにし、その現場の状況や原因を直接確認することで、関係者と改善策を議論します。また、社内報告でも単なる平均値だけでなく、ばらつきや偏りをグラフなどで視覚的に示すことで、現場間の違いや課題を分かりやすく伝える資料作りに努めていきたいと思います。

アカウンティング入門

P/LやB/Sが身近に!苦手意識が和らいだ瞬間

P/LやB/Sを理解するための第一歩とは? P/LやB/Sについてこれまで触れる機会がほとんどなかったため、これらの用語は難解なものでしかなく、強い苦手意識を持っていました。しかし、演習を通じて実際のP/LやB/Sを見てみると、学んだ用語がそのまま表に反映されており、その意味も理解できました。この経験を通して、以前よりP/LやB/Sを身近に感じるようになり、苦手意識も和らぎました。未知の世界に少しでも触れることができたことに、素直に喜びを感じています。 P/LやB/Sを読む機会をどう増やす? 今後は、気になる企業のP/LやB/Sを読む機会を積極的に設け、世の中の資金の流れや仕組みを理解したいと思います。また、新規事業提案の際には、今回学んだ資金の流れを意識して提案書を作成するつもりです。グループワークで新規事業の際には予測財務諸表が良いとのアドバイスも受けましたが、9月末までに提案をまとめる必要があり、現時点ではコンセプトや価格、原価、戦略が定まっていないため、予測財務諸表の作成は困難でした。今後、話が進んだ際には関係する複数部署に協力を仰ぎ、予測財務諸表を作り、しっかりと資金面で先を見据えた提案を行う予定です。 新規事業に必要な数字の意識とは? 予測財務諸表の作成を念頭に置きながら、まずは他社のP/LやB/Sをたくさん見ることから始めようと思います。しかし、それだけではなく、いくらで販売するのか、売上見込みはどの程度か、原価はいくらに設定するのか、販管費はどの程度必要か、利益はどれくらい見込めるか、固定資産として必要なものは何か、負債はどのように変化していくか、必要経費はどこから調達するかなど、具体的な数字を意識しながら計画を立てていくつもりです。まずは、誰にどのような商品やサービスを提供するのかを明確にします。

クリティカルシンキング入門

切り口を変える学びのヒント

どの分け方が効果的? データを分解する方法について、実際に手を動かしながら学ぶことができました。表からグラフを作成する際、従来は区切りのよい数字(例:5刻みや10刻み)で分類していましたが、特徴が際立つ分け方を検討することが大きな学びとなりました。 なぜ来場数が減少? また、博物館の来場数の減少原因を分析する中で、たとえ特徴的な傾向が見えても、その結果だけに安心せず「本当にそうなのか?」と別の切り口から検証することの大切さを実感しました。 どこでつまずいた? ①お問い合わせの原因分析では、顧客がどこでつまずいているかを考える際に、MECEで学んだ「プロセスで分ける」手法が活用できそうです。どの工程で問題が多いのかを明確にすることで、根拠に基づいた対応策を検討することが可能だと感じました。 要望整理で新発見? ②要望リストの整理に関しては、従来は顧客の要望が多い順に整理していましたが、顧客の属性や規模など、別の切り口でも考えることで新たな気づきが得られ、優先順位を決める際に役立つ情報が得られると感じました。 仕様調整はどう扱う? ③仕様調整については、システム上対応可能なものの、影響範囲が大きく判断が難しい課題を抱えています。来週のミーティングに向け、MECEの三つの切り口を活用して影響範囲を漏れなく洗い出す予定です。優先度の高いこの項目から着手し、ミーティングまでに発生する可能性のある事象を整理し、そのうえで課題として発生しそうな点も含めた資料を作成します。 1on1で何を伝える? また、①と②に関しては、1on1の場で上司に学びを伝える予定です。特に、①については、まず自分用のメモを作成し、顧客がどのプロセスにいるのかを把握してから対応策を検討する訓練を行います。

データ・アナリティクス入門

問題解決のプロセスで成果を出す方法

「Why」と「How」の探求は? 問題解決の4つのプロセスのうち、最後の2つである「Why(なぜ)」と「How(どのように)」について考えました。問題の原因を明らかにするために、プロセスを分解し、どの段階に問題があるのかを特定します。そして、解決策を検討する際には、複数の選択肢を洗い出し、それぞれの根拠を持って選定します。 学びをどう生かすか? これまでの学習でも、都合の良いデータばかりを集めないことや、仮説思考で柔軟に考えることの重要性を学んできました。同様に、「How」についても決め打ちせず、複数の選択肢を洗い出し、判断基準を設け、重要度で比較して解決策を選ぶようにします。 A/Bテストの手法とは? また、A/Bテストについても学びました。複数の案を条件を揃えて比較し、評価する手法です。複数の案を実際に試し、反応を確認しながら仮説検証を繰り返して評価します。ある事例では、スピードが重要で3ヶ月も待てないため、同時にランダム表示を選択しましたが、条件を揃える理由に納得しました。 黒字化への挑戦は成功? ちょうど今週、この学びを生かす機会がありました。自部門の数字が黒字にならない原因を考える場面があったのです。これは長年の問題で、まだ解決に至っていません。今週の学びを基に、原因や解決案を決め打ちせず、プロセスに分解し、複数の仮説を立て、根拠となるデータを示しながら解決策に向けた対策を考えていきたいと思います。 残業時間の原因は何か? 最後に、自身の月々の残業がなぜ80時間に達してしまうのかについても、4つのプロセスを用いて考えてみることにします。さらに、Q2で記載した問題の原因について、ある程度仮説を立てています。それらの仮説が正しいかどうか、データを用いて分析することを早速始めてみます。

データ・アナリティクス入門

データの見方が変わる!定量分析の魔法

定量分析の視点をどう活用する? 定量分析の5つの視点(1. インパクト、2. ギャップ、3. トレンド、4. ばらつき、5. パターン)を学びました。データを漫然と眺めるのではなく、これらの視点で見ることで効率的に示唆を得られると感じました。特に、平均値を取る際に「標準偏差(データのばらつき度合)」という視点をこれまで考えたことがありませんでした。同じ平均値でも「ばらつきがある」か「ばらつきがない」かでデータの意味合いが変わります。今後は標準偏差も併せてチェックしていきたいと思います。 データ比較時のポイントは? 売上やサービス利用者数などのデータを前年度と比較する際には、定量分析の5つの視点を意識して数字を見るように心がけます。また、特定月における新規受講者や解約者を年代別に分析する際、これまで表に落とし込むことは行っていたものの、グラフ作成は少なかったです。今後はヒストグラムなどのグラフを活用し、ビジュアルで傾向を把握できるようにしたいと思います。これはチームメンバーにも促していきたいです。 チームでの視点共有は? まずは、学んだことを言語化し、チームメンバーと共有することが重要です。データの分析もチームメンバーと一緒に行う際、「Aさんはトレンドがないか」「Bさんはばらつきがないか」といった具合に、各メンバーに特定の視点で見る役割を依頼するのも良い考えだと思います。これにより、チーム全体として5つの視点を網羅することができます。 グラフ化で何を検証する? 最後に、各月のサービス利用者の新規受講率や解約率のデータが表として存在していますが、まずは先月のものを目的に応じてグラフ化し、理解の速度や深度にどのような違いがあるのか、グラフから意味ある示唆を導き出しやすくなるのかを検証したいと思います。

クリティカルシンキング入門

図も文字も逃さない!伝わる資料の秘訣

内容は正しく伝わる? スライド作成の際、細かいビジュアルにこだわるのも大切ですが、何よりも伝えたい内容が正しく伝わるかどうかを意識することが重要です。 図表はどう活かす? 読み手に分かりやすいスライドを作るために、主に「視認性」と「文字の表現」の2点に注意しています。まず、グラフについては、ただ数字やグラフを並べるのではなく、何を示したグラフなのか明確に記述することで、内容の理解がよりスムーズになります。また、グラフが多すぎるとかえって情報が伝わりにくくなるため、必要な情報に絞る工夫が求められます。 文字表現はどう? 次に、文字の表現では、フォントや文字の太さ、色を工夫してキーメッセージが目立つようにすることが有効です。ただし、あまりに手を加えすぎると視認性が損なわれ、読みづらくなってしまうため、バランスを考えて調整する必要があります。 資料は見やすい? 私はソフトウェアエンジニアとして、社内用の資料作成においてこれらの考え方を活かし、より理解しやすい仕様書を作成していくことを目指しています。これまでの資料は文字情報のみで構成されていたため、仕様書の内容をスムーズに把握するのが難しいと感じていました。 図解の工夫は? そこで、図を適宜取り入れたり、文字の表現方法を工夫することで、読み手にとってわかりやすい資料作成に取り組んでいこうと考えています。仕様書作成には苦手意識があり、これまで避けがちだった業務ですが、まずは作成する機会を増やし、少しずつ改善していく方針です。 一工夫の成果は? 例えば、1回の資料作成に必ず1つの図を入れるといった具体的な工夫を取り入れることで、無理なく書き方を変えていき、結果的に誰もが理解しやすい仕様書を目指していきたいと考えています。

データ・アナリティクス入門

小さな実験が拓く大きな未来

仮説はどう捉える? これまでの演習よりも多くのデータに触れる機会があったため、ただデータを見るだけではなく、まず「こういう仮説があるのではないか?」という視点を持って取り組むことが重要だと実感しました。また、仮説は一つに固執せず、他の可能性も網羅的に考えることで、思いつきに頼らないアプローチができると感じました。 PDF加工の落とし穴は? 一方で、PDFデータの加工には非常に頼りになる一面があるものの、誤認識により表の数字が間違うケースもあったため、過信せずに慎重に取り扱う必要があると痛感しました。 数字整理はどうする? ファネル分析とABテストは、どちらもすぐに実践できる手法として役立つと感じました。ファネル分析では、業務フローの数字が断片的にしか取得されていない現状を踏まえて、業務フローを整理し、必要なデータを集めてファネル化することが求められます。 仮説検証は進んでる? また、ABテストでは、うまくいっていない点に対して仮説を立て、比べるべき内容を明確にして、結果が確認できるデータを準備することが大切です。これらの手法を同時期にテストし、比較検証することで、より精度の高い分析が可能になると感じました。 分析の意義は何? さらに、なぜファネル分析やABテストが必要なのか、その意義を自分なりに言語化することも重要です。今週学んだ内容を整理し、データアナリティクスの重要性を前提として、具体的な提案にまとめる作業は大変有意義でした。 実践の意味は何? 最後に、実データに毎日触れてトライアンドエラーを重ねることが、さらなる改善点の発見につながると実感しました。これからも、日々の実践を通じて知見を深めていきたいと思います。

クリティカルシンキング入門

受講生の振り返り文 --- 視覚化のコツ:スライドデザインの秘訣

スライド作成の重要性とは? 視覚化のポイントとして、読み手の存在を意識してスライドを作成することが重要です。人間の目線の動きを考慮し、タイトルと構成の整合性を保つ必要があります。強調したい部分には装飾を加え、データは一つにまとめるなど、情報提示に工夫を凝らしましょう。特に、相手に情報を探させないように気を配ることが求められます。また、情報を表すグラフは用途に応じて使い分けることが大切です。 読み手を意識した文章作成法 良い文章の作成も同様に、読み手を意識することが肝心です。文章は目的を抑えつつ、読み手に理解しやすい内容で構成されていることが求められます。冒頭のアイキャッチでまずは興味を引き、リード文で引きつけて読み進めてもらうことが重要です。また、読み手に応じて文章の硬さや柔らかさを調整し、読みやすい体裁を整えることも忘れずに。 効果的な報告書や提案書の作成法 上司への報告やクライアントへの提案時には、スライドを作成する機会が多いでしょう。数字を報告する際には、単にファクトを並べるのではなく、伝えたい部分をグラフなどでわかりやすく表現することが重要です。提案内容をしっかりと読んでもらうためには、スライドのアイキャッチを意識し、文章の体裁を整えることが求められます。 課題分析の視覚化がもたらす効果 事業部の課題分析を行う際には、数字のデータをもとにスライドにまとめて報告することがあります。普段は数字の羅列で伝えることが多いため、グラフ化や色付け、強調ポイントの設定などを通じて、情報を探させないスライドを作成するよう心掛けましょう。スライドの中に含まれるタイトルや文章の体裁を整えることで、見るだけで伝えたい課題が明確に伝わるように工夫することが大切です。

データ・アナリティクス入門

仮説から挑む数字の物語

仮説はどこから来る? 分析の基本は、まずさまざまなデータを比較することにあります。細かなデータやグラフを確認する前に、自分なりの仮説を立てることが大切だと感じました。 3つの軸は何が違う? ここでは「プロセス」「視点」「アプローチ」という3つの軸が重要です。プロセスでは、目的を明確にし、仮説を立て、データを収集して、その仮説を分析により検証します。視点については、インパクト、ギャップ、トレンド、ばらつき、パターンなどに着目します。そしてアプローチとして、グラフや数字、数式を活用する方法が挙げられます。 可視化で何が分かる? 比較のための可視化には、数字に集約する方法、目で見て把握できるようグラフ化する方法、さらには数式にまとめる方法があり、状況に応じて適切な手法を選ぶことが効果的です。 代表値はどう見る? また、データを見やすくするためには「代表値」と「分布」を確認することがポイントです。代表値には単純平均、加重平均、幾何平均、中央値などがあり、ばらつきを把握するには標準偏差が有用です。特に、95%のデータが含まれるという2SDルールは、分析の信頼性を判断する際に役立ちます。 ノーム値は意味ある? クライアントのノーム値を算出して、予算シュミレーションに活用する手法も魅力的です。さらに、業界ごとにどの枠が効果的か比較検証することで、より適切なアプローチを模索することが可能だと思います。 実数値で検証できる? 実際のデータを利用してノーム値を算出する試みは、非常に価値があると感じます。社内にある関連データの算出方法や分析手法を参考にしながら、実数値での検証を進めることで、より実践的な知見が得られるでしょう。

データ・アナリティクス入門

平均だけじゃ語れない真実

平均値だけで判断? 平均値は、データのばらつきを反映しないため、平均値近辺に多くの数値が存在するとは限らず、両極端な数値が混在している場合もあります。そのため、平均値だけに頼ると正確な分析が難しくなることがあります。 標準偏差はどう見る? 標準偏差を加えることで、数値の分布やばらつきを把握することができ、平均値と合わせてデータの傾向を見極めるのに有用です。実際、ある施策の効果検証で前後の数値を単に比較した際には、有意な変化や傾向が見受けられず困惑した経験があります。しかし、標準偏差を算出して分布図に落とし込めば、より明確な傾向が掴めたかもしれないと感じました。 代表値の使い分けは? また、代表値の使い分けにも工夫が必要です。単純平均の他に、値ごとに重みを付けた加重平均、成長率や比率を評価する際に有効な幾何平均、そして外れ値の影響を受けにくい中央値を適宜使い分けることで、より正確な傾向分析が可能となります。 具体例はどう見る? たとえば、男性の育児休業取得日数については、年間の平均値だけでなく、外れ値として極端な値が含まれる場合には中央値を用いて経年の傾向を把握します。さらに、法改正の影響で急増している取得率の増加率を幾何平均で算出し、次年度以降の予測やKPIの設定に活かすといった工夫が重要です。 現業務を再確認? 現在の担当業務においては、従業員の健康診断データ、施策実施前後の変化、女性管理職比率の推移、男性育休取得率の推移など、今回学んだインパクト、ギャップ、トレンド、ばらつき、パターンといった視点およびグラフ、数字、数式といったアプローチを用いることで、見落としがちな傾向や変化を改めて確認することが求められます。

アカウンティング入門

学びが切り拓く経営の新境地

営業と会計は繋がるか? これまで、営業と会計はまったく別の分野だと考えていました。しかし、会計が示す事業活動の一部に営業が含まれているという点に気付かされ、両者の連関性について新たな視点を得ました。 数字で見る事業の姿は? また、数字には具体的な定量面を示す性質があり、「財務三票」を通じて事業活動の定量面をより明確に把握できることを学びました。言葉で定性面を表現することに長けているため、これまで無意識にその具体化を追求してきた一方で、定量的情報があれば同じ事象を立体的に理解できると実感しました。 利益の捉え方は? 個人事業主として活動していた当時は、利益を自分への給与と捉えていたために、自身の給与を事業コストに含めず誤った利益の算出をしていたことに気付きました。事業の健全な拡大には、本来の利益から利益剰余金を経て純資産を増加させる仕組みが重要であり、そのプロセスが欠如すると自転車操業に陥るリスクが高まると理解するに至りました。 将来をどう見据える? 今後は、財務三表を事業方針と連動させながら読み解くことで、これまで定性面から直感的に把握していた事業の将来性や見通しを、定量面からも理解できるように努めたいと考えています。その経験を活かし、日々捉えている定性情報が組織全体にどのような結果をもたらすのかを、大きな視点で論じられるようになることを目指します。 決算書の深意は? さらに、自社の決算書を丹念に読み込み、B/S、P/L、C/Fの各項目が具体的に何を示しているのかを明確なイメージとして捉えたいと思います。数字と事業活動を結びつける過程で不足している要素を洗い出し、疑問を持ちながら更なる理解を深める姿勢を養いたいと感じています。

クリティカルシンキング入門

データ分析で得た新しい視点を育む旅

多角的な分析って? 数字やデータの分析においては、多様な視点での切り口が重要です。どのように分けるべきか迷うこともあるかもしれませんが、迷うよりもまずは様々な方法で分けて可視化してみることが大切です。特徴が見えない場合もありますが、それはその分け方が適していないと学ぶ機会です。特に、MECE(漏れなくダブりなく)を意識して切り分けることで、より正確な分析が可能になります。まず全体像を把握し、MECEを意識した分解を行うことが効果的です。 次回の展開はどう? 現在はコンテンツ開発の時期ではないため、データ分析の機会は少ないですが、次回のコンテンツ開発時には過去のアンケート結果を様々な角度からMECEを意識して可視化することで、新しいコンテンツ開発に役立てたいと思います。また、別の企画での社内研修を考えており、参加者のアンケート結果を活用して次年度の研修内容をどのように改善するかを考える際にこの方法を活用したいと考えています。さらに、アンケート作成時に何を質問すべきか考える際にも役立つと感じています。 可視化の工夫は? 具体的には、以下の方法を試みようと思います。まず、様々なデータを見つけられる限りの切り口で分けて可視化すること。そして、データをエクセルに取り込み、パーセンテージ表示やグラフ化を行い可視化して確認する習慣を身につけることです。さらに、常にMECEを意識し、モレやダブリがないか確認しながら進めることが必要です。 振り返りの学びは? 過去に分析したアンケートデータをもう一度見直し、得た知識をもとに新たな視点で見てみることも重要です。こうした取り組みを通じて、データの見え方の違いを体感し、今後の分析に活かしていくつもりです。
AIコーチング導線バナー

「数字 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right